882 research outputs found

    A correlative and quantitative imaging approach enabling characterization of primary cell-cell communication: Case of human CD4+ T cell-macrophage immunological synapses

    Get PDF
    Cell-to-cell communication engages signaling and spatiotemporal reorganization events driven by highly context-dependent and dynamic intercellular interactions, which are difficult to capture within heterogeneous primary cell cultures. Here, we present a straightforward correlative imaging approach utilizing commonly available instrumentation to sample large numbers of cell-cell interaction events, allowing qualitative and quantitative characterization of rare functioning cell-conjugates based on calcium signals. We applied this approach to examine a previously uncharacterized immunological synapse, investigating autologous human blood CD4+ T cells and monocyte-derived macrophages (MDMs) forming functional conjugates in vitro. Populations of signaling conjugates were visualized, tracked and analyzed by combining live imaging, calcium recording and multivariate statistical analysis. Correlative immunofluorescence was added to quantify endogenous molecular recruitments at the cell-cell junction. By analyzing a large number of rare conjugates, we were able to define calcium signatures associated with different states of CD4+ T cell-MDM interactions. Quantitative image analysis of immunostained conjugates detected the propensity of endogenous T cell surface markers and intracellular organelles to polarize towards cell-cell junctions with high and sustained calcium signaling profiles, hence defining immunological synapses. Overall, we developed a broadly applicable approach enabling detailed single cell- and population-based investigations of rare cell-cell communication events with primary cells

    Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor

    Get PDF
    A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (vRGD) of integrin ligand RGD-motifs. vRGD was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm−2 (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels

    Proteome Based Construction of the Lymphocyte Function-Associated Antigen 1 (LFA-1) Interactome in Human Dendritic Cells.

    Get PDF
    The β2-integrin lymphocyte function-associated antigen 1 (LFA-1) plays an important role in the migration, adhesion and intercellular communication of dendritic cells (DCs). During the differentiation of human DCs from monocyte precursors, LFA-1 ligand binding capacity is completely lost, even though its expression levels were remained constant. Yet LFA-1-mediated adhesive capacity on DCs can be regained by exposing DCs to the chemokine CCL21, suggesting a high degree of regulation of LFA-1 activity during the course of DC differentiation. The molecular mechanisms underlying this regulation of LFA-1 function in DCs, however, remain elusive. To get more insight we attempted to identify specific LFA-1 binding partners that may play a role in regulating LFA-1 activity in DCs. We used highly sensitive label free quantitative mass-spectrometry to identify proteins co-immunoprecipitated (co-IP) with LFA-1 from ex vivo generated DCs. Among the potential binding partners we identified not only established components of integrin signalling pathways and cytoskeletal proteins, but also several novel LFA-1 binding partners including CD13, galectin-3, thrombospondin-1 and CD44. Further comparison to the LFA-1 interaction partners in monocytes indicated that DC differentiation was accompanied by an overall increase in LFA-1 associated proteins, in particular cytoskeletal, signalling and plasma membrane (PM) proteins. The here presented LFA-1 interactome composed of 78 proteins thus represents a valuable resource of potential regulators of LFA-1 function during the DC lifecycle

    Construction of a Global Pain Systems Network Highlights Phospholipid Signaling as a Regulator of Heat Nociception

    Get PDF
    The ability to perceive noxious stimuli is critical for an animal's survival in the face of environmental danger, and thus pain perception is likely to be under stringent evolutionary pressure. Using a neuronal-specific RNAi knock-down strategy in adult Drosophila, we recently completed a genome-wide functional annotation of heat nociception that allowed us to identify α2δ3 as a novel pain gene. Here we report construction of an evolutionary-conserved, system-level, global molecular pain network map. Our systems map is markedly enriched for multiple genes associated with human pain and predicts a plethora of novel candidate pain pathways. One central node of this pain network is phospholipid signaling, which has been implicated before in pain processing. To further investigate the role of phospholipid signaling in mammalian heat pain perception, we analysed the phenotype of PIP5Kα and PI3Kγ mutant mice. Intriguingly, both of these mice exhibit pronounced hypersensitivity to noxious heat and capsaicin-induced pain, which directly mapped through PI3Kγ kinase-dead knock-in mice to PI3Kγ lipid kinase activity. Using single primary sensory neuron recording, PI3Kγ function was mechanistically linked to a negative regulation of TRPV1 channel transduction. Our data provide a systems map for heat nociception and reinforces the extraordinary conservation of molecular mechanisms of nociception across different species. © 2012 Neely et al

    A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors

    Get PDF
    Host proteins are essential for HIV entry and replication and can be important nonviral therapeutic targets. Large-scale RNA interference (RNAi)-based screens have identified nearly a thousand candidate host factors, but there is little agreement among studies and few factors have been validated. Here we demonstrate that a genome-wide CRISPR-based screen identifies host factors in a physiologically relevant cell system. We identify five factors, including the HIV co-receptors CD4 and CCR5, that are required for HIV infection yet are dispensable for cellular proliferation and viability. Tyrosylprotein sulfotransferase 2 (TPST2) and solute carrier family 35 member B2 (SLC35B2) function in a common pathway to sulfate CCR5 on extracellular tyrosine residues, facilitating CCR5 recognition by the HIV envelope. Activated leukocyte cell adhesion molecule (ALCAM) mediates cell aggregation, which is required for cell-to-cell HIV transmission. We validated these pathways in primary human CD4 + T cells through Cas9-mediated knockout and antibody blockade. Our findings indicate that HIV infection and replication rely on a limited set of host-dispensable genes and suggest that these pathways can be studied for therapeutic intervention

    The effector T cell response to influenza infection

    Get PDF
    Influenza virus infection induces a potent initial innate immune response, which serves to limit the extent of viral replication and virus spread. However, efficient (and eventual) viral clearance within the respiratory tract requires the subsequent activation, rapid proliferation, recruitment, and expression of effector activities by the adaptive immune system, consisting of antibody producing B cells and influenza-specific T lymphocytes with diverse functions. The ensuing effector activities of these T lymphocytes ultimately determine (along with antibodies) the capacity of the host to eliminate the viruses and the extent of tissue damage. In this review, we describe this effector T cell response to influenza virus infection. Based on information largely obtained in experimental settings (i.e., murine models), we will illustrate the factors regulating the induction of adaptive immune T cell responses to influenza, the effector activities displayed by these activated T cells, the mechanisms underlying the expression of these effector mechanisms, and the control of the activation/differentiation of these T cells, in situ, in the infected lungs

    Editorial: ImmunoPhysics and ImmunoEngineering

    Get PDF
    © 2020 Bernardino de la Serna, Mellado, Dustin, Garcia-Parajo and Morikis.The immune system comprises a collection of specialized cells, tissues, and organs that protect the organisms against pathogens and can survey cancer cells. Immune responses are precisely coordinated events that take place in complex, specialized tissue microenvironments. For an integrated view of innate and adaptive immune responses at the molecular level, we ideally need a better understanding of how immune cells communicate and fulfill their tasks in vivo, following events spatially and temporally. Conventional biochemical and genetic methods consider the cell as an individual entity and ligand/receptor pairs as isolated systems. Often, the data obtained refers to the average behavior of a pool of cells and/or receptors removed from their real-life context. The use of new technologies, particularly real-time imaging approaches, is showing us that biological responses are very dynamic and extremely dependent on the context in which they take place and are therefore much more diverse than we initially thought. The combination of these new approaches is radically transforming and enriching immunology, as demonstrated by the increasing number of publications in which physical and/or engineering tools are applied to study the immune response. Whilst scientists are often questioned for the discipline their research is best framed in, we rather think that one scientific discipline cannot be reduced to the terms of another. However, defining and naming cross-disciplinary fields sets our minds on common ground and helps establish a fluent communication to eventually produce groundbreaking, beautiful pieces of science. For instance, ImmunoPhysics was probably first coined by Prof. Morikis a couple of decades ago (https://www.biophysics.org/profiles/dimitrios-morikis); nevertheless, ImmunoPhysics has not become widely regarded as a discipline, despite the continuously growing body of research that requires physical approaches to resolving immunological questions. Hence, with this special issue, we wanted to open a scientific platform compiling ImmunoPhysics and ImmunoEngineering research breakthroughs and future perspectives. Sadly, towards the end of this fascinating journey Prof. Morikis passed away; thus now, with this special issue, we would also like to pay tribute to his fundamental contributions to the field

    The HVEM-BTLA xxis restrains T cell help to germinal center B cells and functions as a cell-extrinsic suppressor in lymphomagenesis

    Get PDF
    The tumor necrosis factor receptor superfamily member HVEM is one of the most frequently mutated surface proteins in germinal center (GC)-derived B cell lymphomas. We found that HVEM deficiency increased B cell competitiveness during pre-GC and GC responses. The immunoglobulin (Ig) superfamily protein BTLA regulated HVEM-expressing B cell responses independently of B-cell-intrinsic signaling via HVEM or BTLA. BTLA signaling into T cells through the phosphatase SHP1 reduced T cell receptor (TCR) signaling and preformed CD40 ligand mobilization to the immunological synapse, thus diminishing the help delivered to B cells. Moreover, T cell deficiency in BTLA cooperated with B cell Bcl-2 overexpression, leading to GC B cell outgrowth. These results establish that HVEM restrains the T helper signals delivered to B cells to influence GC selection outcomes, and they suggest that BTLA functions as a cell-extrinsic suppressor of GC B cell lymphomagenesis

    T-Cell Artificial Focal Triggering Tools: Linking Surface Interactions with Cell Response

    Get PDF
    T-cell activation is a key event in the immune system, involving the interaction of several receptor ligand pairs in a complex intercellular contact that forms between T-cell and antigen-presenting cells. Molecular components implicated in contact formation have been identified, but the mechanism of activation and the link between molecular interactions and cell response remain poorly understood due to the complexity and dynamics exhibited by whole cell-cell conjugates. Here we demonstrate that simplified model colloids grafted so as to target appropriate cell receptors can be efficiently used to explore the relationship of receptor engagement to the T-cell response. Using immortalized Jurkat T cells, we monitored both binding and activation events, as seen by changes in the intracellular calcium concentration. Our experimental strategy used flow cytometry analysis to follow the short time scale cell response in populations of thousands of cells. We targeted both T-cell receptor CD3 (TCR/CD3) and leukocyte-function-associated antigen (LFA-1) alone or in combination. We showed that specific engagement of TCR/CD3 with a single particle induced a transient calcium signal, confirming previous results and validating our approach. By decreasing anti-CD3 particle density, we showed that contact nucleation was the most crucial and determining step in the cell-particle interaction under dynamic conditions, due to shear stress produced by hydrodynamic flow. Introduction of LFA-1 adhesion molecule ligands at the surface of the particle overcame this limitation and elucidated the low TCR/CD3 ligand density regime. Despite their simplicity, model colloids induced relevant biological responses which consistently echoed whole cell behavior. We thus concluded that this biophysical approach provides useful tools for investigating initial events in T-cell activation, and should enable the design of intelligent artificial systems for adoptive immunotherapy

    The ICAM-3/LFA-1 interaction is critical for epidermal Langerhans cell alloantigen presentation to CD4 + T cells

    Full text link
    Intercellular adhesion molecule (ICAM)-3 is a recently described member of the immunoglobulin superfamily and, as such, is closely related to ICAM-1 and ICAM-2. All three ICAMS are cognate for the counter-receptor lymphocyte function associated antigen-1 (LFA-L CD11a/CD18). Unlike ICAM-1 and ICAM-2. ICAM-3 is constitutively expressed at high levels on resting leucocytes. We investigated the expression and function of ICAM-3 in normal skin ( n = 5), as well as its expression in psoriasis ( n = 4). atopic eczema ( n = 4), allergic (rhus) contact dermatitis ( n =3). and cutaneous T-cell lymphoma (CTCL. n =2). Five-micrometre cryostat sections of skin were stained using monoclonal antibodies to ICAM-3 and A well characterized immunoperoxidase technique. In normal skin. ICAM-3 was expressed by all cutaneous leucocytes hut most striking was the strong expression of ICAM-3 by Langerhans cells within both epidermis and dermis. This observation was confirmed by double-labelling with CD1a and negative staining with an IgG1 isotype control. In psoriasis, atopic eczema, allergic contact dermatitis, and CTCL. ICAM-3 was co-expressed on all CD1a + cells, although, in psoriasis, the intensity of ICAM-3 expression was reduced. Functional blocking experiments were performed to determine whether the observed ICAM-3 expression on Langerhans cells was functionally important in antigen presentation. CD4 + T cells were prepared from peripheral blood and 10 5 CD4 + T cells combined with 10 5 epidermal cells harvested from keratome biopsies of normal skin of an individual allogeneic to the T-cell donor. Addition of 50 Μg anti-ICAM-3 to the co-culture resulted in a consistent (50%) reduction in degree of alloantigen presentation by Langerhans cells to T cells. Inhibition was 77% of that produced by the addition of anti-LFA-1. These data indicate that ICAM-3 is constitutively expressed by Langerhans cells and is a major ligand for LFA-1 on CD4 + T cells during their response to Langerhans cells. Because fresh Langerhans ceils constitutively express little ICAM-1. whereas ICAM-3 is constitutively expressed at high levels, it would appear that 1CAM-3 is the dominant functional ICAM on in situ Langerhans cells in the normal epidermis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73969/1/j.1365-2133.1995.tb06911.x.pd
    corecore