465 research outputs found
Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli
Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins. Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets
OptiJ: Open-source optical projection tomography of large organ samples
The three-dimensional imaging of mesoscopic samples with Optical Projection Tomography (OPT) has become a powerful tool for biomedical phenotyping studies. OPT uses visible light to visualize the 3D morphology of large transparent samples. To enable a wider application of OPT, we present OptiJ, a low-cost, fully open-source OPT system capable of imaging large transparent specimens up to 13 mm tall and 8 mm deep with 50 µm resolution. OptiJ is based on off-the-shelf, easy-to-assemble optical components and an ImageJ plugin library for OPT data reconstruction. The software includes novel correction routines for uneven illumination and sample jitter in addition to CPU/GPU accelerated reconstruction for large datasets. We demonstrate the use of OptiJ to image and reconstruct cleared lung lobes from adult mice. We provide a detailed set of instructions to set up and use the OptiJ framework. Our hardware and software design are modular and easy to implement, allowing for further open microscopy developments for imaging large organ samples
Ecological factors related to the widespread distribution of sylvatic Rhodnius ecuadoriensis populations in southern Ecuador
<p>Abstract</p> <p>Background</p> <p>Chagas disease transmission risk is a function of the presence of triatomines in domestic habitats. <it>Rhodnius ecuadoriensis </it>is one of the main vectors implicated in transmission of <it>Trypanosoma cruzi </it>in Ecuador. This triatomine species is present in domestic, peridomestic and sylvatic habitats in the country. To determine the distribution of sylvatic populations of <it>R. ecuadoriensis </it>and the factors related to this distribution, triatomine searches were conducted between 2005 and 2009 in southern Ecuador.</p> <p>Methods</p> <p>Manual triatomine searches were conducted by skilled bug collectors in 23 communities. Sylvatic searched sites were selected by a) directed sampling, where microhabitats were selected by the searchers and b) random sampling, where sampling points where randomly generated. Domiciliary triatomine searches were conducted using the one man-hour method. Natural trypanosome infection was determined by microscopic examination and PCR. Generalized linear models were used to test the effect of environmental factors on the presence of sylvatic triatomines.</p> <p>Results</p> <p>In total, 1,923 sylvatic individuals were collected representing a sampling effort of 751 man-hours. Collected sylvatic triatomines were associated with mammal and bird nests. The 1,219 sampled nests presented an infestation index of 11.9%, a crowding of 13 bugs per infested nest, and a colonization of 80% of the nests. Triatomine abundance was significantly higher in squirrel (<it>Sciurus stramineus</it>) nests located above five meters from ground level and close to the houses. In addition, 8.5% of the 820 examined houses in the same localities were infested with triatomines. There was a significant correlation between <it>R. ecuadoriensis </it>infestation rates found in sylvatic and synanthropic environments within communities (<it>p </it>= 0.012). Parasitological analysis revealed that 64.7% and 15.7% of the sylvatic bugs examined (n = 300) were infected with <it>Trypanosoma cruzi </it>and <it>T. rangeli </it>respectively, and 8% of the bugs presented mixed infections.</p> <p>Conclusions</p> <p>The wide distribution of sylvatic <it>R. ecuadoriensis </it>populations may jeopardize the effectiveness of control campaigns conducted to eliminate domestic populations of this species. Also, the high <it>T. cruzi </it>infection rates found in sylvatic <it>R. ecuadoriensis </it>populations in southern Ecuador could constitute a risk for house re-infestation and persistent long-term Chagas disease transmission in the region.</p
Interventions for families affected by HIV
Family-based interventions are efficacious for human immunodeficiency virus (HIV) detection, prevention, and care, but they are not broadly diffused. Understanding intervention adaptation and translation processes can support evidence-based intervention (EBI) diffusion processes. This paper provides a narrative review of a series of EBI for families affected by HIV (FAH) that were adapted across five randomized controlled trials in the US, Thailand, and South Africa over 15 years. The FAH interventions targeted parents living with HIV and their children or caregiver supports. Parents with HIV were primarily mothers infected through sexual transmission. The EBIs for FAH are reviewed with attention to commonalities and variations in risk environments and intervention features. Frameworks for common and robust intervention functions, principles, practice elements, and delivery processes are utilized to highlight commonalities and adaptations for each location, time period, and intervention delivery settings. Health care, housing, food, and financial security vary dramatically in each risk environment. Yet, all FAH face common health, mental health, transmission, and relationship challenges. The EBIs efficaciously addressed these common challenges and were adapted across contexts with fidelity to robust intervention principles, processes, factors, and practices. Intervention adaptation teams have a series of structural decision points: mainstreaming HIV with other local health priorities or not; selecting an optimal delivery site (clinics, homes, community centers); and how to translate intervention protocols to local contexts and cultures. Replication of interventions with fidelity must occur at the level of standardized functions and robust principles, processes, and practices, not manualized protocols. Adopting a continuous quality improvement paradigm will enhance rapid and global diffusion of EBI for FAH
Limitations of selective deltamethrin application for triatomine control in central coastal Ecuador
<p>Abstract</p> <p>Background</p> <p>This year-long study evaluated the effectiveness of a strategy involving selective deltamethrin spraying and community education for control of Chagas disease vectors in domestic units located in rural communities of coastal Ecuador.</p> <p>Results</p> <p>Surveys for triatomines revealed peridomestic infestation with <it>Rhodnius ecuadoriensis </it>and <it>Panstrongylus howardi</it>, with infestation indices remaining high during the study (13%, 17%, and 10%, at initial, 6-month, and 12-month visits, respectively), which indicates a limitation of this strategy for triatomine population control. Infestation was found 6 and 12 months after spraying with deltamethrin. In addition, a large number of previously vector-free domestic units also were found infested at the 6- and 12-month surveys, which indicates new infestations by sylvatic triatomines. The predominance of young nymphs and adults suggests new infestation events, likely from sylvatic foci. In addition, infection with <it>Trypanosoma cruzi </it>was found in 65%, 21% and 29% at initial, 6-month and 12-month visits, respectively. All parasites isolated (n = 20) were identified as TcI.</p> <p>Conclusion</p> <p>New vector control strategies need to be devised and evaluated for reduction of <it>T. cruzi </it>transmission in this region.</p
On the Evolutionary Modification of Self-Incompatibility: Implications of Partial Clonality for Allelic Diversity and Genealogical Structure
Experimental investigations of homomorphic self-incompatibility (SI) have revealed an unanticipated level of complexity in its expression, permitting fine regulation over the course of a lifetime or a range of environmental conditions. Many flowering plants express some level of clonal reproduction, and phylogenetic analyses suggest that clonality evolves in a correlated fashion with SI in Solanum (Solanaceae). Here, we use a diffusion approximation to explore the effects on the evolutionary dynamics of SI of vegetative propagation with SI restricted to reproduction through seed. While clonality reduces the strength of frequency-dependent selection maintaining S-allele diversity, much of the great depth typical of S-allele genealogies is preserved. Our results suggest that clonality can play an important role in the evolution of SI systems, and may afford insight into unexplained features of allele genealogies in the Solanaceae
Mycobacterium tuberculosis monoarthritis in a child
A child with isolated Mycobacterium tuberculosis monoarthritis, with features initially suggesting oligoarthritis subtype of juvenile idiopathic arthritis, is presented. This patient illustrates the need to consider the possibility of tuberculosis as the cause of oligoarthritis in high-risk pediatric populations even in the absence of a tuberculosis contact history and without evidence of overt pulmonary disease
Short Telomeres Initiate Telomere Recombination in Primary and Tumor Cells
Human tumors that lack telomerase maintain telomeres by alternative lengthening mechanisms. Tumors can also form in telomerase-deficient mice; however, the genetic mechanism responsible for tumor growth without telomerase is unknown. In yeast, several different recombination pathways maintain telomeres in the absence of telomerase—some result in telomere maintenance with minimal effects on telomere length. To examine non-telomerase mechanisms for telomere maintenance in mammalian cells, we used primary cells and lymphomas from telomerase-deficient mice (mTR−/− and Eμmyc+mTR−/−) and CAST/EiJ mouse embryonic fibroblast cells. These cells were analyzed using pq-ratio analysis, telomere length distribution outliers, CO-FISH, Q-FISH, and multicolor FISH to detect subtelomeric recombination. Telomere length was maintained during long-term growth in vivo and in vitro. Long telomeres, characteristic of human ALT cells, were not observed in either late passage or mTR−/− tumor cells; instead, we observed only minimal changes in telomere length. Telomere length variation and subtelomeric recombination were frequent in cells with short telomeres, indicating that length maintenance is due to telomeric recombination. We also detected telomere length changes in primary mTR−/− cells that had short telomeres. Using mouse mTR+/− and human hTERT+/− primary cells with short telomeres, we found frequent length changes indicative of recombination. We conclude that telomere maintenance by non-telomerase mechanisms, including recombination, occurs in primary cells and is initiated by short telomeres, even in the presence of telomerase. Most intriguing, our data indicate that some non-telomerase telomere maintenance mechanisms occur without a significant increase in telomere length
Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict
Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated
Sensitive Detection of Plasmodium vivax Using a High-Throughput, Colourimetric Loop Mediated Isothermal Amplification (HtLAMP) Platform: A Potential Novel Tool for Malaria Elimination.
INTRODUCTION: Plasmodium vivax malaria has a wide geographic distribution and poses challenges to malaria elimination that are likely to be greater than those of P. falciparum. Diagnostic tools for P. vivax infection in non-reference laboratory settings are limited to microscopy and rapid diagnostic tests but these are unreliable at low parasitemia. The development and validation of a high-throughput and sensitive assay for P. vivax is a priority. METHODS: A high-throughput LAMP assay targeting a P. vivax mitochondrial gene and deploying colorimetric detection in a 96-well plate format was developed and evaluated in the laboratory. Diagnostic accuracy was compared against microscopy, antigen detection tests and PCR and validated in samples from malaria patients and community controls in a district hospital setting in Sabah, Malaysia. RESULTS: The high throughput LAMP-P. vivax assay (HtLAMP-Pv) performed with an estimated limit of detection of 1.4 parasites/ μL. Assay primers demonstrated cross-reactivity with P. knowlesi but not with other Plasmodium spp. Field testing of HtLAMP-Pv was conducted using 149 samples from symptomatic malaria patients (64 P. vivax, 17 P. falciparum, 56 P. knowlesi, 7 P. malariae, 1 mixed P. knowlesi/P. vivax, with 4 excluded). When compared against multiplex PCR, HtLAMP-Pv demonstrated a sensitivity for P. vivax of 95% (95% CI 87-99%); 61/64), and specificity of 100% (95% CI 86-100%); 25/25) when P. knowlesi samples were excluded. HtLAMP-Pv testing of 112 samples from asymptomatic community controls, 7 of which had submicroscopic P. vivax infections by PCR, showed a sensitivity of 71% (95% CI 29-96%; 5/7) and specificity of 93% (95% CI87-97%; 98/105). CONCLUSION: This novel HtLAMP-P. vivax assay has the potential to be a useful field applicable molecular diagnostic test for P. vivax infection in elimination settings
- …