246 research outputs found

    The use of microsatellite polymorphism in genetic mapping of the ostrich (Struthio camelus)

    Get PDF
    The aim of this study was to determine microsatellite polymorphism in ostriches and using it in creation the genetic map of the ostrich. The polymorphism analysis covered 30 microsatellite markers characteristic of ostrich, for the CAU (China Agricultural University) group. The material consisted of 150 ostriches (Struthio camelus). The 30 microsatellite loci was examined and a total of 343 alleles was identified. The number of alleles at a single locus ranged from 5 at locus CAU78 to 34 at locus CAU85. The values for the observed heterozygosity Ho ranged from 0.467 (locus CAU78) to 0.993 (locus CAU16), whereas for the expected heterozygosity He - from 0.510 (locus CAU78) to 0.953 (locus CAU85). Analyzing the individual loci, the highest PIC value, more than 0.7 was observed for: loci CAU85 (0.932), CAU64 (0.861) and CAU32, 75 (0.852), respectively. It should be noted, that the microsatellite markers used in our study were very polymorphic as evidenced by the large number of detected alleles and high rates of heterozygosity, PIC and PE as well. The analysed microsatellite markers may be used in genetic linkage mapping of ostrich, the construction of a comparative genetic map with other ratites, such as emu and rhea, and population genetics studies or phylogenetic studies of these birds

    Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation?

    Get PDF
    BACKGROUND: The cell nucleus is highly compartmentalized with well-defined domains, it is not well understood how this nuclear order is maintained. Many scientists are fascinated by the different set of structures observed in the nucleus to attribute functions to them. In order to distinguish functional compartments from non-functional aggregates, I believe is important to investigate the biophysical nature of nuclear organisation. RESULTS: The various nuclear compartments can be divided broadly as chromatin or protein and/or RNA based, and they have very different dynamic properties. The chromatin compartment displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic phase separation. This phase separation phenomenon leads to the formation of a long-lived interaction network of slow components (chromatin) scattered within domains rich in fast components (protein/RNA). Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high concentration of macromolecules produces volume exclusion effects that enhance attractive interactions between macromolecules, known as macromolecular crowding, which favours the formation of compartments. In this paper I hypothesise that nuclear compartmentalization can be explained by viscoelastic phase separation of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles. CONCLUSION: I demonstrate that nuclear structure can satisfy the predictions of this hypothesis. I discuss the functional implications of this phenomenon

    Prevalence, concordance and determinants of human papillomavirus infection among heterosexual partners in a rural region in central Mexico

    Get PDF
    Background: Although human papillomavirus (HPV) infection in heterosexual couples has been sparsely studied, it is relevant to understand disease burden and transmission mechanisms. The present study determined the prevalence and concordance of type-specific HPV infection as well as the determinants of infection in heterosexual couples in a rural area of Mexico. Methods: A cross-sectional study was conducted in 504 clinically healthy heterosexual couples from four municipalities in the State of Mexico, Mexico. HPV testing was performed using biotinylated L1 consensus primers and reverse line blot in cervical samples from women and in genital samples from men. Thirty-seven HPV types were detected, including high-risk oncogenic types and low-risk types. Multivariate logistic regression models were utilized to evaluate factors associated with HPV. Results: The prevalence of HPV infection was 20.5% in external male genitals and 13.7% in cervical samples. In 504 sexual couples participating in the study, concordance of HPV status was 79%; 34 partners (6.7%) were concurrently infected, and 21 out of 34 partners where both were HPV positive (61.8%) showed concordance for one or more HPV types. The principal risk factor associated with HPV DNA detection in men as well as women was the presence of HPV DNA in the respective regular sexual partner (OR = 5.15, 95% CI 3.01-8.82). In men, having a history of 10 or more sexual partners over their lifetime (OR 2.5, 95% CI 1.3 - 4.8) and having had sexual relations with prostitutes (OR 1.7, 95% CI 1.01 - 2.8) increased the likelihood of detecting HPV DNA. Conclusions: In heterosexual couples in rural regions in Mexico, the prevalence of HPV infection and type-specific concordance is high. High-risk sexual behaviors are strong determinants of HPV infection in men

    Global Metabolomic Profiling of Acute Myocarditis Caused by Trypanosoma cruzi Infection

    Get PDF
    © 2014 Gironès et al. Chagas disease is caused by Trypanosoma cruzi infection, being cardiomyopathy the more frequent manifestation. New chemotherapeutic drugs are needed but there are no good biomarkers for monitoring treatment efficacy. There is growing evidence linking immune response and metabolism in inflammatory processes and specifically in Chagas disease. Thus, some metabolites are able to enhance and/or inhibit the immune response. Metabolite levels found in the host during an ongoing infection could provide valuable information on the pathogenesis and/or identify deregulated metabolic pathway that can be potential candidates for treatment and being potential specific biomarkers of the disease. To gain more insight into those aspects in Chagas disease, we performed an unprecedented metabolomic analysis in heart and plasma of mice infected with T. cruzi. Many metabolic pathways were profoundly affected by T. cruzi infection, such as glucose uptake, sorbitol pathway, fatty acid and phospholipid synthesis that were increased in heart tissue but decreased in plasma. Tricarboxylic acid cycle was decreased in heart tissue and plasma whereas reactive oxygen species production and uric acid formation were also deeply increased in infected hearts suggesting a stressful condition in the heart. While specific metabolites allantoin, kynurenine and p-cresol sulfate, resulting from nucleotide, tryptophan and phenylalanine/tyrosine metabolism, respectively, were increased in heart tissue and also in plasma. These results provide new valuable information on the pathogenesis of acute Chagas disease, unravel several new metabolic pathways susceptible of clinical management and identify metabolites useful as potential specific biomarkers for monitoring treatment and clinical severity in patients.This work was supported by ‘‘Ministerio de Ciencia e Innovación’’ (SAF2010-17833); ‘‘Fondo de Investigaciones Sanitarias’’ (PS09/00538 and PI12/00289); ‘‘Red de Investigación de Centros de Enfermedades Tropicales’’ (RICET RD12/0018/0004); European Union (HEALTH-FE-2008-22303, ChagasEpiNet);‘‘Universidad Autónoma de Madrid’’ and ‘‘Comunidad de Madrid’’ (CC08-UAM/SAL-4440/08); AECID Cooperation with Argentine (A/025417/09 and A/031735/10), Comunidad de Madrid (S-2010/BMD-2332) and ‘‘Fundación Ramón Areces’Peer Reviewe

    Life-Cycle and Genome of OtV5, a Large DNA Virus of the Pelagic Marine Unicellular Green Alga Ostreococcus tauri

    Get PDF
    Large DNA viruses are ubiquitous, infecting diverse organisms ranging from algae to man, and have probably evolved from an ancient common ancestor. In aquatic environments, such algal viruses control blooms and shape the evolution of biodiversity in phytoplankton, but little is known about their biological functions. We show that Ostreococcus tauri, the smallest known marine photosynthetic eukaryote, whose genome is completely characterized, is a host for large DNA viruses, and present an analysis of the life-cycle and 186,234 bp long linear genome of OtV5. OtV5 is a lytic phycodnavirus which unexpectedly does not degrade its host chromosomes before the host cell bursts. Analysis of its complete genome sequence confirmed that it lacks expected site-specific endonucleases, and revealed the presence of 16 genes whose predicted functions are novel to this group of viruses. OtV5 carries at least one predicted gene whose protein closely resembles its host counterpart and several other host-like sequences, suggesting that horizontal gene transfers between host and viral genomes may occur frequently on an evolutionary scale. Fifty seven percent of the 268 predicted proteins present no similarities with any known protein in Genbank, underlining the wealth of undiscovered biological diversity present in oceanic viruses, which are estimated to harbour 200Mt of carbon

    HIV Promoter Integration Site Primarily Modulates Transcriptional Burst Size Rather Than Frequency

    Get PDF
    Mammalian gene expression patterns, and their variability across populations of cells, are regulated by factors specific to each gene in concert with its surrounding cellular and genomic environment. Lentiviruses such as HIV integrate their genomes into semi-random genomic locations in the cells they infect, and the resulting viral gene expression provides a natural system to dissect the contributions of genomic environment to transcriptional regulation. Previously, we showed that expression heterogeneity and its modulation by specific host factors at HIV integration sites are key determinants of infected-cell fate and a possible source of latent infections. Here, we assess the integration context dependence of expression heterogeneity from diverse single integrations of a HIV-promoter/GFP-reporter cassette in Jurkat T-cells. Systematically fitting a stochastic model of gene expression to our data reveals an underlying transcriptional dynamic, by which multiple transcripts are produced during short, infrequent bursts, that quantitatively accounts for the wide, highly skewed protein expression distributions observed in each of our clonal cell populations. Interestingly, we find that the size of transcriptional bursts is the primary systematic covariate over integration sites, varying from a few to tens of transcripts across integration sites, and correlating well with mean expression. In contrast, burst frequencies are scattered about a typical value of several per cell-division time and demonstrate little correlation with the clonal means. This pattern of modulation generates consistently noisy distributions over the sampled integration positions, with large expression variability relative to the mean maintained even for the most productive integrations, and could contribute to specifying heterogeneous, integration-site-dependent viral production patterns in HIV-infected cells. Genomic environment thus emerges as a significant control parameter for gene expression variation that may contribute to structuring mammalian genomes, as well as be exploited for survival by integrating viruses
    • …
    corecore