77 research outputs found

    Cytokine Production but Lack of Proliferation in Peripheral Blood Mononuclear Cells from Chronic Chagas' Disease Cardiomyopathy Patients in Response to T. cruzi Ribosomal P Proteins

    Get PDF
    Background:Trypanosoma cruzi ribosomal P proteins, P2β and P0, induce high levels of antibodies in patients with chronic Chagas' disease Cardiomyopathy (CCC). It is well known that these antibodies alter the beating rate of cardiomyocytes and provoke apoptosis by their interaction with β1-adrenergic and M2-muscarinic cardiac receptors. Based on these findings, we decided to study the cellular immune response to these proteins in CCC patients compared to non-infected individuals.Methodology/Principal findings:We evaluated proliferation, presence of surface activation markers and cytokine production in peripheral blood mononuclear cells (PBMC) stimulated with P2β, the C-terminal portion of P0 (CP0) proteins and T. cruzi lysate from CCC patients predominantly infected with TcVI lineage. PBMC from CCC patients cultured with P2β or CP0 proteins, failed to proliferate and express CD25 and HLA-DR on T cell populations. However, multiplex cytokine assays showed that these antigens triggered higher secretion of IL-10, TNF-α and GM-CSF by PBMC as well as both CD4+ and CD8+ T cells subsets of CCC subjects. Upon T. cruzi lysate stimulation, PBMC from CCC patients not only proliferated but also became activated within the context of Th1 response. Interestingly, T. cruzi lysate was also able to induce the secretion of GM-CSF by CD4+ or CD8+ T cells.Conclusions/Significance:Our results showed that although the lack of PBMC proliferation in CCC patients in response to ribosomal P proteins, the detection of IL-10, TNF-α and GM-CSF suggests that specific T cells could have both immunoregulatory and pro-inflammatory potential, which might modulate the immune response in Chagas' disease. Furthermore, it was possible to demonstrate for the first time that GM-CSF was produced by PBMC of CCC patients in response not only to recombinant ribosomal P proteins but also to parasite lysate, suggesting the value of this cytokine to evaluate T cells responses in T. cruzi infection.Fil: Longhi, Silvia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Atienza, Augusto. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; ArgentinaFil: Perez Prados, Graciela. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Juan A. Fernández"; ArgentinaFil: Buying, Alcinette. Torrey Pines Institute for Molecular Studies; Estados UnidosFil: Balouz, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Buscaglia, Carlos Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Santos, Radleigh. Torrey Pines Institute for Molecular Studies; Estados UnidosFil: Tasso, Laura Mónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Bonato, Ricardo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; ArgentinaFil: Chiale, Pablo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; ArgentinaFil: Pinilla, Clemencia. Torrey Pines Institute for Molecular Studies; Estados UnidosFil: Judkowski, Valeria A.. Torrey Pines Institute for Molecular Studies; Estados UnidosFil: Gomez, Karina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentin

    Somatic PIK3R1 Variation as a Cause of Vascular Malformations and Overgrowth

    Get PDF
    PurposeSomatic activating variants in the PI3K-AKT pathway cause vascular malformations with and without overgrowth. We previously reported an individual with capillary and lymphatic malformation harboring a pathogenic somatic variant in PIK3R1, which encodes three PI3K complex regulatory subunits. Here, we investigate PIK3R1 in a large cohort with vascular anomalies and identify an additional 16 individuals with somatic mosaic variants in PIK3R1.MethodsAffected tissue from individuals with vascular lesions and overgrowth recruited from a multisite collaborative network was studied. Next-generation sequencing targeting coding regions of cell-signaling and cancer-associated genes was performed followed by assessment of variant pathogenicity.ResultsThe phenotypic and variant spectrum associated with somatic variation in PIK3R1 is reported herein. Variants occurred in the inter-SH2 or N-terminal SH2 domains of all three PIK3R1 protein products. Phenotypic features overlapped those of the PIK3CA-related overgrowth spectrum (PROS). These overlapping features included mixed vascular malformations, sandal toe gap deformity with macrodactyly, lymphatic malformations, venous ectasias, and overgrowth of soft tissue or bone.ConclusionSomatic PIK3R1 variants sharing attributes with cancer-associated variants cause complex vascular malformations and overgrowth. The PIK3R1-associated phenotypic spectrum overlaps with PROS. These data extend understanding of the diverse phenotypic spectrum attributable to genetic variation in the PI3K-AKT pathway

    Deep-Sea Fish Distribution Varies between Seamounts: Results from a Seamount Complex off New Zealand

    Get PDF
    Fish species data from a complex of seamounts off New Zealand termed the “Graveyard Seamount Complex’ were analysed to investigate whether fish species composition varied between seamounts. Five seamount features were included in the study, with summit depths ranging from 748–891 m and elevation from 189–352 m. Measures of fish species dominance, rarity, richness, diversity, and similarity were examined. A number of factors were explored to explain variation in species composition, including latitude, water temperature, summit depth, depth at base, elevation, area, slope, and fishing effort. Depth at base and slope relationships were significant with shallow seamounts having high total species richness, and seamounts with a more gradual slope had high mean species richness. Species similarity was modelled and showed that the explanatory variables were driven primarily by summit depth, as well as by the intensity of fishing effort and elevation. The study showed that fish assemblages on seamounts can vary over very small spatial scales, in the order of several km. However, patterns of species similarity and abundance were inconsistent across the seamounts examined, and these results add to a growing literature suggesting that faunal communities on seamounts may be populated from a broad regional species pool, yet show considerable variation on individual seamounts

    Depth refuge and the impacts of SCUBA spearfishing on coral reef fishes

    Get PDF
    In recent decades, spearfishing with SCUBA has emerged as an efficient method for targeting reef fish in deeper waters. However, deeper waters are increasingly recognised as a potential source of refuge that may help sustain fishery resources. We used a combination of historical catch data over a 20-year time period and fishery-independent surveys to investigate the effects of SCUBA spearfishing on coral reef fish populations in the southern Mariana Islands. Two jurisdictions were studied; Guam, where SCUBA spearfishing is practiced, and the nearby Commonwealth of Northern Mariana Islands (CNMI), where SCUBA spearfishing has been banned since 2003. Fishery-independent data were collected using baited remote underwater stereo-video systems (stereo-BRUVs) stratified by depth, marine protected area status and jurisdiction. Herbivores (primary consumers) dominated spearfishing catches, with parrotfish (scarines) and surgeonfish/unicornfish (acanthurids) the main groups harvested. However, the large, endangered humphead wrasse (Cheilinus undulatus) was the main species by weight landed by SCUBA spearfishers. SCUBA spearfishing was associated with declining size of scarines over time and catches shifting from a dominance of large parrotfishes to a mixed assemblage with increasing proportions of acanthurids. Comparisons between Guam and the nearby CNMI revealed differences in the assemblage of fished species and also greater size of scarines and acanthurids in deep water where SCUBA fishing is banned. These results suggest that SCUBA spearfishing impacts reef fish populations and that the restriction of this fishing method will ensure refuge for fish populations in deeper waters. We recommend a ban on SCUBA spearfishing to preserve or aid the recovery of large, functionally important coral reef species and to improve the sustainability of coral reef fisheries

    Science Priorities for Seamounts: Research Links to Conservation and Management

    Get PDF
    Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling techniques, critical evaluation of environmental surrogates as faunal “proxies”, and ecological risk assessment

    Interaction between Coastal and Oceanic Ecosystems of the Western and Central Pacific Ocean through Predator-Prey Relationship Studies

    Get PDF
    The Western and Central Pacific Ocean sustains the highest tuna production in the world. This province is also characterized by many islands and a complex bathymetry that induces specific current circulation patterns with the potential to create a high degree of interaction between coastal and oceanic ecosystems. Based on a large dataset of oceanic predator stomach contents, our study used generalized linear models to explore the coastal-oceanic system interaction by analyzing predator-prey relationship. We show that reef organisms are a frequent prey of oceanic predators. Predator species such as albacore (Thunnus alalunga) and yellowfin tuna (Thunnus albacares) frequently consume reef prey with higher probability of consumption closer to land and in the western part of the Pacific Ocean. For surface-caught-predators consuming reef prey, this prey type represents about one third of the diet of predators smaller than 50 cm. The proportion decreases with increasing fish size. For predators caught at depth and consuming reef prey, the proportion varies with predator species but generally represents less than 10%. The annual consumption of reef prey by the yellowfin tuna population was estimated at 0.8±0.40CV million tonnes or 2.17×1012±0.40CV individuals. This represents 6.1%±0.17CV in weight of their diet. Our analyses identify some of the patterns of coastal-oceanic ecosystem interactions at a large scale and provides an estimate of annual consumption of reef prey by oceanic predators

    Habitat Specialization in Tropical Continental Shelf Demersal Fish Assemblages

    Get PDF
    The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304) collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1–10 m depth), down the fore reef slope to the reef base (10–30 m depth) then across the adjacent continental shelf (30–110 m depth). Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category) were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of connected habitats through which fish can migrate

    Out of Their Depth? Isolated Deep Populations of the Cosmopolitan Coral Desmophyllum dianthus May Be Highly Vulnerable to Environmental Change

    Get PDF
    Deep sea scleractinian corals will be particularly vulnerable to the effects of climate change, facing loss of up to 70% of their habitat as the Aragonite Saturation Horizon (below which corals are unable to form calcium carbonate skeletons) rises. Persistence of deep sea scleractinian corals will therefore rely on the ability of larvae to disperse to, and colonise, suitable shallow-water habitat. We used DNA sequence data of the internal transcribed spacer (ITS), the mitochondrial ribosomal subunit (16S) and mitochondrial control region (MtC) to determine levels of gene flow both within and among populations of the deep sea coral Desmophyllum dianthus in SE Australia, New Zealand and Chile to assess the ability of corals to disperse into different regions and habitats. We found significant genetic subdivision among the three widely separated geographic regions consistent with isolation and limited contemporary gene flow. Furthermore, corals from different depth strata (shallow <600 m, mid 1000–1500 m, deep >1500 m) even on the same or nearby seamounts were strongly differentiated, indicating limited vertical larval dispersal. Genetic differentiation with depth is consistent with the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we propose that coral larvae will be retained within, and rarely migrate among, these water masses. The apparent absence of vertical larval dispersal suggests deep populations of D. dianthus are unlikely to colonise shallow water as the aragonite saturation horizon rises and deep waters become uninhabitable. Similarly, assumptions that deep populations will act as refuges for shallow populations that are impacted by activities such as fishing or mining are also unlikely to hold true. Clearly future environmental management strategies must consider both regional and depth-related isolation of deep-sea coral populations

    Abundance and Distribution Patterns of Thunnus albacares in Isla del Coco National Park through Predictive Habitat Suitability Models

    Get PDF
    Information on the distribution and habitat preferences of ecologically and commercially important species is essential for their management and protection. This is especially important as climate change, pollution, and overfishing change the structure and functioning of pelagic ecosystems. In this study, we used Bayesian hierarchical spatial-temporal models to map the Essential Fish Habitats of the Yellowfin tuna (Thunnus albacares) in the waters around Isla del Coco National Park, Pacific Costa Rica, based on independent underwater observations from 1993 to 2013. We assessed if observed changes in the distribution and abundance of this species are related with habitat characteristics, fishing intensity or more extreme climatic events, including the El Niño Southern Oscillation, and changes on the average sea surface temperature. Yellowfin tuna showed a decreasing abundance trend in the sampled period, whereas higher abundances were found in shallow and warmer waters, with high concentration of chlorophyll-a, and in surrounding seamounts. In addition, El Niño Southern Oscillation events did not seem to affect Yellowfin tuna distribution and abundance. Understanding the habitat preferences of this species, using approaches as the one developed here, may help design integrated programs for more efficient management of vulnerable species.Marine Stewardship Council/[]/MSC/LondresUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR
    corecore