1,034 research outputs found

    Cigarette Smoking and Effects on Hormone Function in Premenopausal Women

    Get PDF
    Cigarette smoke contains compounds that are suspected to cause reproductive damage and possibly affect hormone activity; therefore, we examined hormone metabolite patterns in relation to validated smoking status. We previously conducted a prospective study of women of reproductive age (n = 403) recruited from a large health maintenance organization, who collected urine daily during an average of three to four menstrual cycles. Data on covariates and daily smoking habits were obtained from a baseline interview and daily diary, and smoking status was validated by cotinine assay. Urinary metabolite levels of estrogen and progesterone were measured daily throughout the cycles. For the present study, we measured urinary levels of the pituitary hormone follicle-stimulating hormone (FSH) in a subset of about 300 menstrual cycles, selected by smoking status, with the time of transition between two cycles being of primary interest. Compared with nonsmokers, moderate to heavy smokers (≥ 10 cigarettes/day) had baseline levels (e.g., early follicular phase) of both steroid metabolites that were 25–35% higher, and heavy smokers (≥ 20 cigarettes/day) had lower luteal-phase progesterone metabolite levels. The mean daily urinary FSH levels around the cycle transition were increased at least 30–35% with moderate smoking, even after adjustment. These patterns suggest that chemicals in tobacco smoke alter endocrine function, perhaps at the level of the ovary, which in turn effects release of the pituitary hormones. This endocrine disruption likely contributes to the reported associations of smoking with adverse reproductive outcomes, including menstrual dysfunction, infertility, and earlier menopause

    Reconstructing the three-dimensional GABAergic microcircuit of the striatum

    Get PDF
    A system's wiring constrains its dynamics, yet modelling of neural structures often overlooks the specific networks formed by their neurons. We developed an approach for constructing anatomically realistic networks and reconstructed the GABAergic microcircuit formed by the medium spiny neurons (MSNs) and fast-spiking interneurons (FSIs) of the adult rat striatum. We grew dendrite and axon models for these neurons and extracted probabilities for the presence of these neurites as a function of distance from the soma. From these, we found the probabilities of intersection between the neurites of two neurons given their inter-somatic distance, and used these to construct three-dimensional striatal networks. The MSN dendrite models predicted that half of all dendritic spines are within 100 mu m of the soma. The constructed networks predict distributions of gap junctions between FSI dendrites, synaptic contacts between MSNs, and synaptic inputs from FSIs to MSNs that are consistent with current estimates. The models predict that to achieve this, FSIs should be at most 1% of the striatal population. They also show that the striatum is sparsely connected: FSI-MSN and MSN-MSN contacts respectively form 7% and 1.7% of all possible connections. The models predict two striking network properties: the dominant GABAergic input to a MSN arises from neurons with somas at the edge of its dendritic field; and FSIs are interconnected on two different spatial scales: locally by gap junctions and distally by synapses. We show that both properties influence striatal dynamics: the most potent inhibition of a MSN arises from a region of striatum at the edge of its dendritic field; and the combination of local gap junction and distal synaptic networks between FSIs sets a robust input-output regime for the MSN population. Our models thus intimately link striatal micro-anatomy to its dynamics, providing a biologically grounded platform for further study

    Tracer-derived freshwater composition of the Siberian continental shelf and slope following the extreme Arctic summer of 2007

    Get PDF
    We investigate the freshwater composition of the shelf and slope of the Arctic Ocean north of the New Siberian Islands using geochemical tracer data (delta O-18, Ba, and PO4*) collected following the extreme summer of 2007. We find that the anomalous wind patterns that partly explained the sea ice minimum at this time also led to significant quantities of Pacific-derived surface water in the westernmost part of the Makarov Basin. We also find larger quantities of meteoric water near Lomonosov Ridge than were found in 1995. Dissolved barium is depleted in the upper layers in one region of our study area, probably as a result of biological activity in open waters. Increasingly ice-free conditions compromise the quantitative use of barium as a tracer of river water in the Arctic Ocean. Citation: Abrahamsen, E. P., M. P. Meredith, K. K. Falkner, S. Torres-Valdes, M. J. Leng, M. B. Alkire, S. Bacon, S. W. Laxon, I. Polyakov, and V. Ivanov (2009), Tracer-derived freshwater composition of the Siberian continental shelf and slope following the extreme Arctic summer of 2007, Geophys. Res. Lett., 36, L07602, doi:10.1029/2009GL037341

    A Comparison of Scent Marking between a Monogamous and Promiscuous Species of Peromyscus: Pair Bonded Males Do Not Advertise to Novel Females

    Get PDF
    Scent marking can provide behavioral and physiological information including territory ownership and mate advertisement. It is unknown how mating status and pair cohabitation influence marking by males from different social systems. We compared the highly territorial and monogamous California mouse (Peromyscus californicus) to the less territorial and promiscuous white-footed mouse (P. leucopus). Single and mated males of both species were assigned to one of the following arenas lined with filter paper: control (unscented arena), male scented (previously scent-marked by a male conspecific), or females present (containing females in small cages). As expected, the territorial P. californicus scent marked and overmarked an unfamiliar male conspecific's scent marks more frequently than P. leucopus. Species differences in responses to novel females were also found based on mating status. The presence of unfamiliar females failed to induce changes in scent marking in pair bonded P. californicus even though virgin males increased marking behavior. Pair bonding appears to reduce male advertisement for novel females. This is in contrast to P. leucopus males that continue to advertise regardless of mating status. Our data suggest that communication through scent-marking can diverge significantly between species based on mating system and that there are physiological mechanisms that can inhibit responsiveness of males to female cues

    A Phylogeny and Timescale for the Evolution of Pseudocheiridae (Marsupialia: Diprotodontia) in Australia and New Guinea

    Get PDF
    Pseudocheiridae (Marsupialia: Diprotodontia) is a family of endemic Australasian arboreal folivores, more commonly known as ringtail possums. Seventeen extant species are grouped into six genera (Pseudocheirus, Pseudochirulus, Hemibelideus, Petauroides, Pseudochirops, Petropseudes). Pseudochirops and Pseudochirulus are the only genera with representatives on New Guinea and surrounding western islands. Here, we examine phylogenetic relationships among 13 of the 17 extant pseudocheirid species based on protein-coding portions of the ApoB, BRCA1, ENAM, IRBP, Rag1, and vWF genes. Maximum parsimony, maximum likelihood, and Bayesian methods were used to estimate phylogenetic relationships. Two different relaxed molecular clock methods were used to estimate divergence times. Bayesian and maximum parsimony methods were used to reconstruct ancestral character states for geographic provenance and maximum elevation occupied. We find robust support for the monophyly of Pseudocheirinae (Pseudochirulus + Pseudocheirus), Hemibelidinae (Hemibelideus + Petauroides), and Pseudochiropsinae (Pseudochirops + Petropseudes), respectively, and for an association of Pseudocheirinae and Hemibelidinae to the exclusion of Pseudochiropsinae. Within Pseudochiropsinae, Petropseudes grouped more closely with the New Guinean Pseudochirops spp. than with the Australian Pseudochirops archeri, rendering Pseudochirops paraphyletic. New Guinean species belonging to Pseudochirops are monophyletic, as are New Guinean species belonging to Pseudochirulus. Molecular dates and ancestral reconstructions of geographic provenance combine to suggest that the ancestors of extant New Guinean Pseudochirops spp. and Pseudochirulus spp. dispersed from Australia to New Guinea ∼12.1–6.5 Ma (Pseudochirops) and ∼6.0–2.4 Ma (Pseudochirulus). Ancestral state reconstructions support the hypothesis that occupation of high elevations (>3000 m) is a derived feature that evolved on the terminal branch leading to Pseudochirops cupreus, and either evolved in the ancestor of Pseudochirulus forbesi, Pseudochirulus mayeri, and Pseudochirulus caroli, with subsequent loss in P. caroli, or evolved independently in P. mayeri and P. forbesi. Divergence times within the New Guinean Pseudochirops clade are generally coincident with the uplift of the central cordillera and other highlands. Diversification within New Guinean Pseudochirulus occurred in the Plio-Pleistocene after the establishment of the Central Range and other highlands

    The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation

    Get PDF
    PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Hypothyroidism in utero\textit{in utero} stimulates pancreatic beta cell proliferation and hyperinsulinaemia in the ovine fetus during late gestation

    Get PDF
    Development of pancreatic beta cell mass before birth is essential for normal growth of the fetus and for long-term control of carbohydrate metabolism in postnatal life. Thyroid hormones are also important regulators of fetal growth, and the present study tested the hypotheses that thyroid hormones promote beta cell proliferation in the fetal ovine pancreatic islets, and that growth retardation in hypothyroid fetal sheep is associated with reductions in pancreatic beta cell mass and circulating insulin concentration in utero\textit{in utero}. Organ growth and pancreatic islet cell proliferation and mass were examined in sheep fetuses following removal of the thyroid gland in utero. The effects of triiodothyronine (T3_{3}), insulin and leptin on beta cell proliferation rates were determined in isolated fetal ovine pancreatic islets in vitro\textit{in vitro}. Hypothyroidism in the sheep fetus resulted in an asymmetric pattern of organ growth, pancreatic beta cell hyperplasia, and elevated plasma insulin and leptin concentrations. In pancreatic islets isolated from intact fetal sheep, beta cell proliferation in vitro\textit{in vitro} was reduced by T3_{3} in a dose-dependent manner and increased by insulin at high concentrations only. Leptin induced a bimodal response whereby beta cell proliferation was suppressed at the lowest, and increased at the highest, concentrations. Therefore, proliferation of beta cells isolated from the ovine fetal pancreas is sensitive to physiological concentrations of T3_{3}, insulin and leptin. Alterations in these hormones may be responsible for the increased beta cell proliferation and mass observed in the hypothyroid sheep fetus and may have consequences for pancreatic function in later life.The project was funded in part by the Biotechnology and Biological Sciences Research Council (BB/HO1697X/1). S.E.H. was supported by a Nigel Groome PhD Studentship at Oxford Brookes University. S.E.H. was awarded a practical skills grant from the Society for Endocrinology and a travel grant from the Physiological Society to fund work at the University of Arizona
    corecore