816 research outputs found
Reliability and reproducibility of perfusion MRI in cognitively normal subjects
Arterial spin labeling (ASL) magnetic resonance imaging (MRI) is becoming a popular method for measuring perfusion due to its ability of generating perfusion maps noninvasively. This allows for frequent repeat scanning, which is especially useful for follow-up studies. However, limited information is available regarding the reliability and reproducibility of ASL perfusion measurements. Here, the reliability and reproducibility of pulsed ASL was investigated in an elderly population to determine the variation in perfusion among cognitively normal individuals in different brain structures. Intraclass correlation coefficients (ICC) and within-subject variation coefficients (wsCV) were used to estimate reliability and reproducibility over a period of 1 year. Twelve cognitively normal subjects (75.5±5.3 years old, six male and six female) were scanned four times (at 0, 3, 6 and 12 months). No significant difference in cerebral blood flow (CBF) was found over this period. CBF values ranged from 46 to 53 ml/100 g per minute in the medial frontal gyrus (MFG) and from 40 to 44 ml/100 g per minute over all gray matter regions in the superior part of the brain. Data obtained from the first two scans were processed by two readers and showed high reliability (ICC >0.97) and reproducibility (wsCV <6%). However, over the total period of 1 year, reliability reduced to a moderate level (ICC=0.63-0.74) with wsCVs of gray matter, left MFG, right MFG of 13.5%, 12.3%, and 15.4%, respectively. In conclusion, measurement of CBF with pulsed ASL provided good agreement between inter-raters. A moderate level of reliability was obtained over a 1-year period, which was attributed to variance in slice positioning and coregistration. As such pulsed ASL has the potential to be used for CBF comparison in longitudinal studies. © 2010 Elsevier Inc.postprin
A New Approximate Min-Max Theorem with Applications in Cryptography
We propose a novel proof technique that can be applied to attack a broad
class of problems in computational complexity, when switching the order of
universal and existential quantifiers is helpful. Our approach combines the
standard min-max theorem and convex approximation techniques, offering
quantitative improvements over the standard way of using min-max theorems as
well as more concise and elegant proofs
Field-driven femtosecond magnetization dynamics induced by ultrastrong coupling to THz transients
Controlling ultrafast magnetization dynamics by a femtosecond laser is
attracting interest both in fundamental science and industry because of the
potential to achieve magnetic domain switching at ever advanced speed. Here we
report experiments illustrating the ultrastrong and fully coherent light-matter
coupling of a high-field single-cycle THz transient to the magnetization vector
in a ferromagnetic thin film. We could visualize magnetization dynamics which
occur on a timescale of the THz laser cycle and two orders of magnitude faster
than the natural precession response of electrons to an external magnetic
field, given by the Larmor frequency. We show that for one particular
scattering geometry the strong coherent optical coupling can be described
within the framework of a renormalized Landau Lifshitz equation. In addition to
fundamentally new insights to ultrafast magnetization dynamics the coherent
interaction allows for retrieving the complex time-frequency magnetic
properties and points out new opportunities in data storage technology towards
significantly higher storage speed.Comment: 25 page
On passion and moral behavior in achievement settings: The mediating role of pride
The Dualistic Model of Passion (Vallerand et al., 2003) distinguishes two types of passion: harmonious passion (HP) and obsessive passion (OP) that predict adaptive and less adaptive outcomes, respectively. In the present research, we were interested in understanding the role of passion in the adoption of moral behavior in achievement settings. It was predicted that the two facets of pride (authentic and hubristic; Tracy & Robins, 2007) would mediate the passion-moral behavior relationship. Specifically, because people who are passionate about a given activity are highly involved in it, it was postulated that they should typically do well and thus experience high levels of pride when engaged in the activity. However, it was also hypothesized that while both types of passion should be conducive to authentic pride, only OP should lead to hubristic pride. Finally, in line with past research on pride (Carver, Sinclair, & Johnson, 2010; Tracy et al., 2009), only hubristic pride was expected to negatively predict moral behavior, while authentic pride was expected to positively predict moral behavior. Results of two studies conducted with paintball players (N=163, Study 1) and athletes (N=296, Study 2) supported the proposed model. Future research directions are discussed in light of the Dualistic Model of Passion
Timing of Favorable Conditions, Competition and Fertility Interact to Govern Recruitment of Invasive Chinese Tallow Tree in Stressful Environments
The rate of new exotic recruitment following removal of adult invaders (reinvasion pressure) influences restoration
outcomes and costs but is highly variable and poorly understood. We hypothesize that broad variation in average
reinvasion pressure of Triadica sebifera (Chinese tallow tree, a major invader) arises from differences among habitats in
spatiotemporal availability of realized recruitment windows. These windows are periods of variable duration long enough to
permit establishment given local environmental conditions. We tested this hypothesis via a greenhouse mesocosm
experiment that quantified how the duration of favorable moisture conditions prior to flood or drought stress (window
duration), competition and nutrient availability influenced Triadica success in high stress environments. Window duration
influenced pre-stress seedling abundance and size, growth during stress and final abundance; it interacted with other
factors to affect final biomass and germination during stress. Stress type and competition impacted final size and biomass,
plus germination, mortality and changes in size during stress. Final abundance also depended on competition and the
interaction of window duration, stress type and competition. Fertilization interacted with competition and stress to
influence biomass and changes in height, respectively, but did not affect Triadica abundance. Overall, longer window
durations promoted Triadica establishment, competition and drought (relative to flood) suppressed establishment, and
fertilization had weak effects. Interactions among factors frequently produced different effects in specific contexts. Results
support our ‘outgrow the stress’ hypothesis and show that temporal availability of abiotic windows and factors that
influence growth rates govern Triadica recruitment in stressful environments. These findings suggest that native seed
addition can effectively suppress superior competitors in stressful environments. We also describe environmental scenarios
where specific management methods may be more or less effective. Our results enable better niche-based estimates of
local reinvasion pressure, which can improve restoration efficacy and efficiency by informing site selection and optimal
Management
Room temperature chiral magnetic skyrmion in ultrathin magnetic nanostructures
Magnetic skyrmions are chiral spin structures with a whirling configuration.
Their topological properties, nanometer size and the fact that they can be
moved by small current densities have opened a new paradigm for the
manipulation of magnetisation at the nanoscale. To date, chiral skyrmion
structures have been experimentally demonstrated only in bulk materials and in
epitaxial ultrathin films and under external magnetic field or at low
temperature. Here, we report on the observation of stable skyrmions in
sputtered ultrathin Pt/Co/MgO nanostructures, at room temperature and zero
applied magnetic field. We use high lateral resolution X-ray magnetic circular
dichroism microscopy to image their chiral N\'eel internal structure which we
explain as due to the large strength of the Dzyaloshinskii-Moriya interaction
as revealed by spin wave spectroscopy measurements. Our results are
substantiated by micromagnetic simulations and numerical models, which allow
the identification of the physical mechanisms governing the size and stability
of the skyrmions.Comment: Submitted version. Extended version to appear in Nature
Nanotechnolog
Specific and individuated death reflection fosters identity integration
Identity integration is the process wherein a person assimilates multiple or conflicting identities (e.g., beliefs, values, needs) into a coherent, unified self-concept. Three experiments examined whether contemplating mortality in a specific and individuated manner (i.e., via the death reflection manipulation) facilitated outcomes indicative of identity integration. Participants in the death reflection condition (vs. control conditions) considered positive and negative life experiences as equally important in shaping their current identity (Experiment 1), regarded self-serving values and other-serving values as equally important life principles (Experiment 2), and were equally motivated to pursue growth-oriented and security-oriented needs (Experiment 3). Death reflection motivates individuals to integrate conflicting aspects of their identity into a coherent self-concept. Given that identity integration is associated with higher well-being, the findings have implications for understanding the psychological benefits of existential contemplation
Global and local fMRI signals driven by neurons defined optogenetically by type and wiring
Despite a rapidly-growing scientific and clinical brain imaging literature based on functional magnetic resonance imaging (fMRI) using blood oxygenation level-dependent (BOLD) signals, it remains controversial whether BOLD signals in a particular region can be caused by activation of local excitatory neurons. This difficult question is central to the interpretation and utility of BOLD, with major significance for fMRI studies in basic research and clinical applications. Using a novel integrated technology unifying optogenetic control of inputs with high-field fMRI signal readouts, we show here that specific stimulation of local CaMKIIα-expressing excitatory neurons, either in the neocortex or thalamus, elicits positive BOLD signals at the stimulus location with classical kinetics. We also show that optogenetic fMRI (ofMRI) allows visualization of the causal effects of specific cell types defined not only by genetic identity and cell body location, but also by axonal projection target. Finally, we show that ofMRI within the living and intact mammalian brain reveals BOLD signals in downstream targets distant from the stimulus, indicating that this approach can be used to map the global effects of controlling a local cell population. In this respect, unlike both conventional fMRI studies based on correlations and fMRI with electrical stimulation that will also directly drive afferent and nearby axons, this ofMRI approach provides causal information about the global circuits recruited by defined local neuronal activity patterns. Together these findings provide an empirical foundation for the widely-used fMRI BOLD signal, and the features of ofMRI define a potent tool that may be suitable for functional circuit analysis as well as global phenotyping of dysfunctional circuitry
The heart healthy lenoir project-an intervention to reduce disparities in hypertension control: study protocol
Background
Racial disparities in blood pressure control are well established; however the impact of low health literacy (LHL) on blood pressure has garnered less attention. Office based interventions that are created with iterative patient, practice and community stakeholder input and are rolled out incrementally, may help address these disparities in hypertension control. This paper describes our study protocol.
Methods/design
Using a community based participatory research (CBPR) approach, we designed and implemented a cohort study that includes both a practice level and patient level intervention to enhance the care and support of patients with hypertension in primary care practices in a rural region of eastern North Carolina. The study is divided into a formative phase and an ongoing 2.5 year implementation phase. Our main care enhancement activities include the integration of a community health coach, using home blood pressure monitoring in clinical decision making, standardizing care delivery processes, and working to improve medication adherence. Main outcomes include overall blood pressure change, the differential change in blood pressure by race (African American vs. White) and health literacy level (low vs. higher health literacy).
Discussion
Using a community based participatory approach in primary care practice settings has helped to engage patients and practice staff and providers in the research effort and in making practice changes to support hypertension care. Practices have engaged at varying levels, but progress has been made in implementing and iteratively improving upon the interventions to date
Simultaneous control of magnetic topologies for reconfigurable vortex arrays
The topological spin textures in magnetic vortices in confined magnetic elements offer a platform for understanding the fundamental physics of nanoscale spin behavior and the potential of harnessing their unique spin structures for advanced magnetic technologies. For magnetic vortices to be practical, an effective reconfigurability of the two topologies of magnetic vortices, that is, the circularity and the polarity, is an essential prerequisite. The reconfiguration issue is highly relevant to the question of whether both circularity and polarity are reliably and efficiently controllable. In this work, we report the first direct observation of simultaneous control of both circularity and polarity by the sole application of an in-plane magnetic field to arrays of asymmetrically shaped permalloy disks. Our investigation demonstrates that a high degree of reliability for control of both topologies can be achieved by tailoring the geometry of the disk arrays. We also propose a new approach to control the vortex structures by manipulating the effect of the stray field on the dynamics of vortex creation. The current study is expected to facilitate complete and effective reconfiguration of magnetic vortex structures, thereby enhancing the prospects for technological applications of magnetic vortices.ope
- …
