203 research outputs found

    Sugar Ka Saathi – A Case Study Designing Digital Self-management Tools for People Living with Diabetes in Pakistan

    Get PDF
    This paper presents the results of an iterative participatory process to design a smart self-management tool for less-literate people living with diabetes in Pakistan. Initially, interviews and focus groups with sixty-nine people living with diabetes identified issues that they face when self-managing including un-controllable factors, lack of diabetes awareness, low-tech mobile phones, and poor internet availability. We developed personas grounded in the scoping results and adjusted our PD approach to focus on more tangible design artefacts before running narrative scoping PD sessions. Working from older, illiterate persona, we designed a phone-line delivered Interactive Voice Response (IVR) system. We developed a functional IVR Prototype “Sugar ka Saathi” (Diabetes Companion) with input from a group of 4 Pakistan-based healthcare professionals, to act as a design probe in the PD process. We tested the IVR probe with fifty-seven of the original scoping participants which validated the knowledge transferred by the IVR and its acceptability. Invisible design videos were shown to elaborate the IVR and community concept to thirteen participants through two filmed videos using our existing persona characters from the scoping studies, these videos helped to engage older people with diabetes in PD sessions

    The Expanding Fireball of Nova Delphini 2013

    Full text link
    A classical nova occurs when material accreting onto the surface of a white dwarf in a close binary system ignites in a thermonuclear runaway. Complex structures observed in the ejecta at late stages could result from interactions with the companion during the common envelope phase. Alternatively, the explosion could be intrinsically bipolar, resulting from a localized ignition on the surface of the white dwarf or as a consequence of rotational distortion. Studying the structure of novae during the earliest phases is challenging because of the high spatial resolution needed to measure their small sizes. Here we report near-infrared interferometric measurements of the angular size of Nova Delphini 2013, starting from one day after the explosion and continuing with extensive time coverage during the first 43 days. Changes in the apparent expansion rate can be explained by an explosion model consisting of an optically thick core surrounded by a diffuse envelope. The optical depth of the ejected material changes as it expands. We detect an ellipticity in the light distribution, suggesting a prolate or bipolar structure that develops as early as the second day. Combining the angular expansion rate with radial velocity measurements, we derive a geometric distance to the nova of 4.54 +/- 0.59 kpc from the Sun.Comment: Published in Nature. 32 pages. Final version available at http://www.nature.com/nature/journal/v515/n7526/full/nature13834.htm

    Sternal plate fixation for sternal wound reconstruction: initial experience (Retrospective study)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Median sternotomy infection and bony nonunion are two commonly described complications which occur in 0.4 - 5.1% of cardiac procedures. Although relatively infrequent, these complications can lead to significant morbidity and mortality. The aim of this retrospective study is to evaluate the initial experience of a transverse plate fixation system following wound complications associated with sternal dehiscence with or without infection following cardiac surgery.</p> <p>Methods</p> <p>A retrospective chart review of 40 consecutive patients who required sternal wound reconstruction post sternotomy was performed. Soft tissue debridement with removal of all compromised tissue was performed. Sternal debridement was carried using ronguers to healthy bleeding bone. All patients underwent sternal fixation using three rib plates combined with a single manubrial plate (Titanium Sternal Fixation System<sup>®</sup>, Synthes). Incisions were closed in a layered fashion with the pectoral muscles being advanced to the midline. Data were expressed as mean ± SD, Median (range) or number (%). Statistical analyses were made by using Excel 2003 for Windows (Microsoft, Redmond, WA, USA).</p> <p>Results</p> <p>There were 40 consecutive patients, 31 males and 9 females. Twenty two patients (55%) were diagnosed with sternal dehiscence alone and 18 patients (45%) with associated wound discharge. Thirty eight patients went on to heal their wounds. Two patients developed recurrent wound infection and required VAC therapy. Both were immunocompromised. Median post-op ICU stay was one day with the median hospital stay of 18 days after plating.</p> <p>Conclusion</p> <p>Sternal plating appears to be an effective option for the treatment of sternal wound dehiscence associated with sternal instability. Long-term follow-up and further larger studies are needed to address the indications, benefits and complications of sternal plating.</p

    Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks

    Get PDF
    We have compared a recently developed module-based algorithm LeMoNe for reverse-engineering transcriptional regulatory networks to a mutual information based direct algorithm CLR, using benchmark expression data and databases of known transcriptional regulatory interactions for Escherichia coli and Saccharomyces cerevisiae. A global comparison using recall versus precision curves hides the topologically distinct nature of the inferred networks and is not informative about the specific subtasks for which each method is most suited. Analysis of the degree distributions and a regulator specific comparison show that CLR is 'regulator-centric', making true predictions for a higher number of regulators, while LeMoNe is 'target-centric', recovering a higher number of known targets for fewer regulators, with limited overlap in the predicted interactions between both methods. Detailed biological examples in E. coli and S. cerevisiae are used to illustrate these differences and to prove that each method is able to infer parts of the network where the other fails. Biological validation of the inferred networks cautions against over-interpreting recall and precision values computed using incomplete reference networks.Comment: 13 pages, 1 table, 6 figures + 6 pages supplementary information (1 table, 5 figures

    But Why does it Work? A Rational Protocol Design Treatment of Bitcoin

    Get PDF
    An exciting recent line of work has focused on formally investigating the core cryptographic assumptions underlying the security of Bitcoin. In a nutshell, these works conclude that Bitcoin is secure if and only if the majority of the mining power is honest. Despite their great impact, however, these works do not address an incisive question asked by positivists and Bitcoin critics, which is fuelled by the fact that Bitcoin indeed works in reality: Why should the real-world system adhere to these assumptions? In this work we employ the machinery from the Rational Protocol Design (RPD) framework by Garay et al. [FOCS\u2713] to analyze Bitcoin and address questions such as the above. We show assuming a natural class of incentives for the miners\u27 behavior i.e., rewarding them for adding blocks to the blockchain but having them pay for mining here one can reserve the honest majority assumption as a fallback, or even, depending on the application, completely replace it by the assumption that the miners aim to maximize their revenue. Our results underscore the appropriateness of RPD as a ``rational cryptography\u27\u27 framework for analyzing Bitcoin. Along the way, we devise significant extensions to the original RPD machinery that broaden its applicability to cryptocurrencies, which may be of independent interest

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package

    Defining an Essence of Structure Determining Residue Contacts in Proteins

    Get PDF
    The network of native non-covalent residue contacts determines the three-dimensional structure of a protein. However, not all contacts are of equal structural significance, and little knowledge exists about a minimal, yet sufficient, subset required to define the global features of a protein. Characterisation of this “structural essence” has remained elusive so far: no algorithmic strategy has been devised to-date that could outperform a random selection in terms of 3D reconstruction accuracy (measured as the Ca RMSD). It is not only of theoretical interest (i.e., for design of advanced statistical potentials) to identify the number and nature of essential native contacts—such a subset of spatial constraints is very useful in a number of novel experimental methods (like EPR) which rely heavily on constraint-based protein modelling. To derive accurate three-dimensional models from distance constraints, we implemented a reconstruction pipeline using distance geometry. We selected a test-set of 12 protein structures from the four major SCOP fold classes and performed our reconstruction analysis. As a reference set, series of random subsets (ranging from 10% to 90% of native contacts) are generated for each protein, and the reconstruction accuracy is computed for each subset. We have developed a rational strategy, termed “cone-peeling” that combines sequence features and network descriptors to select minimal subsets that outperform the reference sets. We present, for the first time, a rational strategy to derive a structural essence of residue contacts and provide an estimate of the size of this minimal subset. Our algorithm computes sparse subsets capable of determining the tertiary structure at approximately 4.8 Å Ca RMSD with as little as 8% of the native contacts (Ca-Ca and Cb-Cb). At the same time, a randomly chosen subset of native contacts needs about twice as many contacts to reach the same level of accuracy. This “structural essence” opens new avenues in the fields of structure prediction, empirical potentials and docking

    Study of USH1 Splicing Variants through Minigenes and Transcript Analysis from Nasal Epithelial Cells

    Get PDF
    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital profound deafness, vestibular areflexia and prepubertal retinitis pigmentosa. The first purpose of this study was to determine the pathologic nature of eighteen USH1 putative splicing variants found in our series and their effect in the splicing process by minigene assays. These variants were selected according to bioinformatic analysis. The second aim was to analyze the USH1 transcripts, obtained from nasal epithelial cells samples of our patients, in order to corroborate the observed effect of mutations by minigenes in patient’s tissues. The last objective was to evaluate the nasal ciliary beat frequency in patients with USH1 and compare it with control subjects. In silico analysis were performed using four bioinformatic programs: NNSplice, Human Splicing Finder, NetGene2 and Spliceview. Afterward, minigenes based on the pSPL3 vector were used to investigate the implication of selected changes in the mRNA processing. To observe the effect of mutations in the patient’s tissues, RNA was extracted from nasal epithelial cells and RT-PCR analyses were performed. Four MYO7A (c.470G>A, c.1342_1343delAG, c.5856G>A and c.3652G>A), three CDH23 (c.2289+1G>A, c.6049G>A and c.8722+1delG) and one PCDH15 (c.3717+2dupTT) variants were observed to affect the splicing process by minigene assays and/or transcripts analysis obtained from nasal cells. Based on our results, minigenes are a good approach to determine the implication of identified variants in the mRNA processing, and the analysis of RNA obtained from nasal epithelial cells is an alternative method to discriminate neutral Usher variants from those with a pathogenic effect on the splicing process. In addition, we could observe that the nasal ciliated epithelium of USH1 patients shows a lower ciliary beat frequency than control subjects

    Exploring the Contextual Sensitivity of Factors that Determine Cell-to-Cell Variability in Receptor-Mediated Apoptosis

    Get PDF
    Stochastic fluctuations in gene expression give rise to cell-to-cell variability in protein levels which can potentially cause variability in cellular phenotype. For TRAIL (TNF-related apoptosis-inducing ligand) variability manifests itself as dramatic differences in the time between ligand exposure and the sudden activation of the effector caspases that kill cells. However, the contribution of individual proteins to phenotypic variability has not been explored in detail. In this paper we use feature-based sensitivity analysis as a means to estimate the impact of variation in key apoptosis regulators on variability in the dynamics of cell death. We use Monte Carlo sampling from measured protein concentration distributions in combination with a previously validated ordinary differential equation model of apoptosis to simulate the dynamics of receptor-mediated apoptosis. We find that variation in the concentrations of some proteins matters much more than variation in others and that precisely which proteins matter depends both on the concentrations of other proteins and on whether correlations in protein levels are taken into account. A prediction from simulation that we confirm experimentally is that variability in fate is sensitive to even small increases in the levels of Bcl-2. We also show that sensitivity to Bcl-2 levels is itself sensitive to the levels of interacting proteins. The contextual dependency is implicit in the mathematical formulation of sensitivity, but our data show that it is also important for biologically relevant parameter values. Our work provides a conceptual and practical means to study and understand the impact of cell-to-cell variability in protein expression levels on cell fate using deterministic models and sampling from parameter distributions

    Network deconvolution as a general method to distinguish direct dependencies in networks

    Get PDF
    Recognizing direct relationships between variables connected in a network is a pervasive problem in biological, social and information sciences as correlation-based networks contain numerous indirect relationships. Here we present a general method for inferring direct effects from an observed correlation matrix containing both direct and indirect effects. We formulate the problem as the inverse of network convolution, and introduce an algorithm that removes the combined effect of all indirect paths of arbitrary length in a closed-form solution by exploiting eigen-decomposition and infinite-series sums. We demonstrate the effectiveness of our approach in several network applications: distinguishing direct targets in gene expression regulatory networks; recognizing directly interacting amino-acid residues for protein structure prediction from sequence alignments; and distinguishing strong collaborations in co-authorship social networks using connectivity information alone. In addition to its theoretical impact as a foundational graph theoretic tool, our results suggest network deconvolution is widely applicable for computing direct dependencies in network science across diverse disciplines.National Institutes of Health (U.S.) (grant R01 HG004037)National Institutes of Health (U.S.) (grant HG005639)Swiss National Science Foundation (Fellowship)National Science Foundation (U.S.) (NSF CAREER Award 0644282
    corecore