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Abstract. An exciting recent line of work has focused on formally investigating the core cryptographic
assumptions underlying the security of Bitcoin. In a nutshell, these works conclude that Bitcoin is secure
if and only if the majority of the mining power is honest. Despite their great impact, however, these
works do not address an incisive question asked by positivists and Bitcoin critics, which is fuelled
by the fact that Bitcoin indeed works in reality: Why should the real-world system adhere to these
assumptions?
In this work we employ the machinery from the Rational Protocol Design (RPD) framework by Garay et
al. [FOCS’13] to analyze Bitcoin and address questions such as the above. We show assuming a natural
class of incentives for the miners’ behavior—i.e., rewarding them for adding blocks to the blockchain
but having them pay for mining—where one can reserve the honest majority assumption as a fallback,
or even, depending on the application, completely replace it by the assumption that the miners aim to
maximize their revenue.
Our results underscore the appropriateness of RPD as a “rational cryptography” framework for an-
alyzing Bitcoin. Along the way, we devise significant extensions to the original RPD machinery that
broaden its applicability to cryptocurrencies, which may be of independent interest.

1 Introduction

Following a number of informal and/or ad hoc attempts to address the security of Bitcoin, an exciting recent
line of work has focused on devising a rigorous cryptographic analysis of the system [12, 13, 26, 1]. At a high
level, these works start by describing an appropriate model of execution, and, within it, an abstraction of
the original Bitcoin protocol [22] along with a specification of its security goals in terms of a set of intuitive
desirable properties [12, 13, 26], or in terms of a functionality in a simulation-based composable framework [1].
They then prove that (their abstraction of) the Bitcoin protocol meets the proposed specification under the
assumption that the majority of the computing power invested in mining bitcoins is by devices which mine
according to the Bitcoin protocol, i.e., honestly. This assumption of honest majority of computing power—
which had been a folklore within the Bitcoin community for years underlying the system’s security—is
captured by considering the parties who are not mining honestly as controlled by a central adversary who
coordinates them trying to disrupt the protocol’s outcome.

Meanwhile, motivated by the fact that Bitcoin is an “economic good” (i.e., BTCs are exchangeable for
national currencies and goods) a number of works have focused on a rational analysis of the system [28, 6,
8, 7, 30, 29, 21, 31, 23, 27, 14]. In a nutshell, these works treat Bitcoin as a game between the (competing)
rational miners, trying to maximize a set of utilities that are postulated as a natural incentive structure for
the system. The goal of such an analysis is to investigate whether or not, or under which assumptions on
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the incentives and/or the level of collaboration of the parties, Bitcoin achieves a stable state, i.e., a game-
theoretic equilibrium. However, despite several enlightening conclusions, more often than not the prediction
of such analyses is rather pessimistic. Indeed, these results typically conclude that, unless assumptions on the
amount of honest computing power—sometimes even stronger than just majority—are made, the induced
incentives result in plausibility of an attack to the Bitcoin mining protocol, which yields undesired outcomes
such as forks on the blockchain, or a considerable slowdown.

Yet, to our knowledge, no fork or substantial slowdown that is attributed to rational attacks has been
observed to date, and the Bitcoin network keeps performing according to its specification, even though
mining pools would, in principle, be able to launch collaborative attacks given the power they control.5 In
the game-theoretic setting, this mismatch between the predicted and observed behavior would be typically
interpreted as an indication that the underlying assumptions about the utility of miners in existing analysis
do not accurately capture the miners’ rationale. Thus, two main questions still remain and are often asked
by Bitcoin skeptics:

Q1. How come Bitcoin is not broken using such an attack?
Or, stated differently, why does it work and why do majorities not collude to break it?

Q2. Why do honest miners keep mining given the plausibility of such attacks?
In this work we use a rigorous cryptographic reasoning to address the above questions. In a nutshell,

we devise a rational-cryptography framework for capturing the economic forces that underly the tension
between honest miners and (possibly colluding) deviating miners, and explain how these forces affect the
miners’ behavior. Using this model, we show how natural incentives (that depend on the expected revenue
of the miners) in combination with a high monetary value of Bitcoin, can explain the fact that Bitcoin is
not being attacked in reality even though majority coalitions are in fact possible. In simple terms, we show
how natural assumptions about the miners’ incentives allow to substitute (either entirely or as a fallback
assumption) the honest-majority assumption. To our knowledge, this is the first work that formally proves
such rational statements that do not rely on assumptions about the adversary’s computing power. We stress
that the incentives we consider depend solely on costs and rewards for mining—i.e., mining (coinbase) and
transaction fees—and, in particular, we make no assumption that implicitly or explicitly deters forming
adversarial majority coalitions.

What enables us to address the above questions is utilizing the Rational Protocol Design (RPD) method-
ology by Garay et al. [10] to derive stability notions that closely capture the idiosyncrasies of coordinated
incentive-driven attacks on the Bitcoin protocol. To better understand how our model employs RPD to
address the above questions, we recall the basic ideas behind the framework.

Instead of considering the protocol participants—in our case, the Bitcoin miners—as rational agents,
RPD considers a meta-game, called the attack game. The attack game in its basic form is a two-agent
zero-sum extensive game of perfect information with a horizon of length two, i.e., two sequential moves.6 It
involves two players, called the protocol designer D—who is trying to come up with the best possible protocol
for a given (multi-party) task—and the attacker A—who is trying to come up with the (polynomial-time)
strategy/adversary that optimally attacks the protocol. The game proceeds in two steps: First, (only) D plays
by choosing a protocol for the (honest) players to execute; A is informed about D’s move and it is now his
term to produce his move. The attacker’s strategy is, in fact, a cryptographic adversary that attacks the
protocol proposed by the designer.

The incentives of both A and D are described by utility functions, and their respective moves are carried
out with the goal of maximizing these utilities.7 In a nutshell, the attacker’s utility function rewards the
adversary proportionally to how often he succeeds in provoking his intended breach, and depending on its
severity. Since the game is zero-sum, the designer’s utility is the opposite of the attacker’s; this captures the
standard goal of cryptographic protocols, namely, “taming” the adversary in the best possible manner.
5 We refer to forks of the Bitcoin chain itself, not to forks that spin-off a new currency.
6 This is often referred to as a Stackelberg game in the game theory literature [25].
7 Notice, however, the asymmetry: The designer needs to come up with a protocol based on speculation of what the

adversary’s move will be, whereas the attacker plays after being informed about the actual designer’s move, i.e.,
about the protocol.
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Based on the above game, the RPD framework introduces the following natural security notion, termed
attack-payoff security, that captures the quality of a protocolΠ for a given specification when facing incentive-
driven attacks aiming to maximize the attacker’s utility. Informally, attack-payoff security ensures that the
adversary is not willing to attack the protocol Π in any way that would make it deviate from its ideal
specification. In other words, the protocol is secure against the class of strategies that maximize the attacker’s
utility. In this incentive-driven setting, this is the natural analogue of security against malicious adversaries.8
For cases where attack payoff security is not feasible, RPD proposes the notion of attack-payoff optimality,
which ensures that the protocol Π is a best response to the best attack.

A useful feature of RPD (see below) is that all definitions build on Canetti’s simulation-based framework
(either the standalone framework [4] or the UC framework [5]), where they can be easily instantiated.
In fact, there are several reasons, both at the intuitive and technical levels, that make RPD particularly
appealing to analyze complex protocols that are already running, such as Bitcoin. First, RPD supports
adaptive corruptions which captures the scenario of parties who are currently running their (mining) strategy
changing their mind and deciding to attack. This is particularly useful when aiming to address the likelihood
of insider attacks against a protocol which is already in operation. For the same reason, RPD is also suitable
for capturing attacks induced by compromised hardware/software and/or bribing [3] (although we will not
consider bribing here). Second, the use of a central adversary as the attacker’s move ensures that, even
though we are restricting to incentive-driven strategies, we allow full collaboration of cheaters. This allows,
for example, to capture mining pools deciding to deviate from the protocol’s specification.

At the technical level, using the attack-game to specify the incentives takes away many of the nasty com-
plications of “rational cryptography” models. For example, it dispenses with the need to define cumbersome
computational versions of equilibrium [9, 20, 18, 24, 16, 17], since the actual rational agents, i.e., D and A,
are not computationally bounded. (Only their actions need to be PPT machines.) Furthermore, as it builds
on simulation-based security, RPD comes with a composition theorem allowing for regular cryptographic
subroutine replacement. The latter implies that we can analyze protocols in simpler hybrid-worlds, as we
usually do in cryptography, without worrying about whether or not their quality or stability will be affected
once we replace their hybrids by corresponding cryptographic implementations.

Our contributions. In this work, we apply the RPD methodology to analyze the quality of Bitcoin against
incentive-driven attacks, and address the existential questions posted above. As RPD is UC-based, we use
the Bitcoin abstraction as a UC protocol and the corresponding Bitcoin ledger functionality from [1] to
capture the goal/specification of Bitcoin. As argued in [1], this functionality captures all the properties that
have been proposed in [12, 26].

We define a natural class of incentives for the attacker by specifying utilities which, on one hand, reward
him according to Bitcoin’s standard reward mechanisms (i.e., block rewards and transaction fees) for blocks
permanently inserted in the blockchain by adversarial miners, and, on the other hand, penalize him for
resources that he uses (e.g., use of mining equipment and electricity). In order to overcome the inconsistency
of rewards being typically in Bitcoins and costs being in real money, we introduce the notion of a conversion
rate CR converting reward units (such as BTC) into mining-cost units (such as US Dollar) This allows us to
make statements about the quality of the protocol depending on its value measured in a national currency.

We then devise a similar incentive structure for the designer, where, again, the honest parties are (collec-
tively) rewarded for blocks they permanently insert into the blockchain, but pay for the resources they use.
What differentiates the incentives of the attacker from the designer’s is that the latter is utmost interested
in preserving the “health” of the blockchain, which we also reflect in its utility definition. Implicit in our
formulation is the assumption that the attacker does not gain reward from attacking the system, unless this
attack has a financial gain.9

Interestingly, in order to apply the RPD methodology to Bitcoin we need to extend it in non-trivial
ways, to capture for example non-zero-sum games—as the utility of the designer and the attacker are not
necessarily opposites—and to provide stronger notions of security and stability. In more detail, we introduce
8 In fact, if we require this for any arbitrary utility function, then the two notions—attack-payoff security and

malicious security—coincide.
9 In particular, a fork might be provoked by the attacker only if it is expected to increase his revenue.
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the notion of strong attack payoff security, which mandates that the attacker will stick to playing a passive
strategy, i.e., stick to Bitcoin (but might abuse the adversary’s power to delay messages in the network). We
also introduce the natural notion of incentive compatibility (IC) which mandates that both the attacker and
the designer will have their parties play the given protocol. Observe that incentive compatibility trivially
implies strong attack payoff security, and the latter implies the standard attack payoff security from the
original RPD framework assuming the protocol is at least correct when no party deviates. These extensions
to RPD widen its applicability and might therefore be of independent interest. We note that although we
focus on analysis of Bitcoin here, the developed methodology can be adapted to analyze other main-stream
cryptocurrencies.

Having laid out the model, we then use it to analyze Bitcoin. We start our analysis with the simpler case
where the utilities do not depend on the messages—i.e., transactions—that are included into the blocks of
the blockchain: when permanently inserting a block into the blockchain, a miner is just rewarded with a fixed
block-reward value. This can be seen as corresponding to the Bitcoin backbone abstraction proposed in [12],
but enriched with incentives to mine blocks. An interpretation of our results for this setting, listed below,
is that they address blockchains that are not necessarily intended to be used as cryptocurrency ledgers.
Although arguably this is not the case for Bitcoin, our analysis already reveals several surprising aspects,
namely, that in this setting one does not need to rely on honest majority of computing power to ensure
the quality of the system. Furthermore, these results offer intuition on what is needed to achieve stability
in the more complete case, which also incorporates transaction fees. Summarizing, we prove the following
statements for this backbone-like setting, where the contents of the blocks do not influence the player’s
strategies (but the rewards and costs do):

Bitcoin is strongly attack-payoff secure, i.e., no coordinated coalition has an incentive to deviate from
the protocol, provided that the rest of the parties play it. Further, this statement holds no matter how
large the coalition (i.e., no matter how large the fraction of corrupt computing power) and no matter
how high the conversion rate is. This means that in this backbone-like setting we can fully replace the
assumption of honest majority of computing power by the above intuitive rational assumption.10

If the reward for mining a block is high enough so that mining is on average profitable, then the Bitcoin
protocol is even incentive-compatible with respect to local deviations. In other words, not only colluding
parties (e.g., mining pools) do not have an incentive to deviate, but also the honest miners have a clear
incentive to keep mining. Again, this makes no honest-majority assumption. Furthermore, as a sanity
check, we also prove that this is not true if the conversion rate drops so that miners expect to be losing
revenue by mining. The above confirms the intuition that after the initial bootstrapping phase where
value is poured into the system (i.e., CR becomes large enough), such a ledger will keep working according
to its specification for as long as the combination of conversion rate and block-reward is high enough.

With the intuition gained from the analysis in the above idealized setting, we next turn to the more
realistic setting which closer captures Bitcoin, where block contents are messages that have an associated
fee. We refer to these messages as transactions, and use the standard restrictions of Bitcoin on the transaction
fees: every transaction has a maximum fee and the fee is a multiple of the minimum division.11 We remark
that in all formal analyses [12, 26, 1] the transactions are considered as provided as inputs by an explicit
environment that is supposed to capture the application layer that sits on top of the blockchain and uses
it. As such, the environment will also be responsible for the choice of transaction fees and the distribution
of transactions to the miners. For most generality, we do not assume as in [12, 26] that all transactions are
communicated by the environment to all parties via a broadcast-like mechanism, but rather that they are
distributed (i.e., input) by the environment to the miners, individually, who might then forward them using
the network (if they are honest) or not. This more realistic transaction-submission mechanism is already
explicit in [1].

We call this model that incorporates both mining rewards and transaction fees into the reward of the
miner for a block as the full-reward model. Interestingly, this model allows us to also make predictions about
10 It should be noted though that our analysis considers, similarly to [12, 26, 1], a fixed difficulty parameter. The

extension to variable difficulty is left as future research.
11 For Bitcoin the minimum division is 1 satoshi = 10−8 BTC, and there is typically a cap on fees [2].

4



the Bitcoin era when the rewards for mining a block will be much smaller than the transaction fees (or even
zero).

We stress that transactions in our work are dealt with as messages that have an explicit fee associated
with them, rather than actions which result in transferring BTCs from one miner to another. This means
that other than its associated fee, the contents of a transaction does not affect the strategies of the players in
the attack game. This corresponds to the assumption that the miners, who are responsible for maintaining
the ledger, are different than the users, which, for example, translate the contents of the blocks as exchanges
of cryptocurrency value, and which are part of the application/environment. We refer to this assumption as
the miners/users separation principle. This assumption is explicit in all existing works, and offers a good
abstraction to study the incentives for maintaining the ledger—which is the scope of our work—separately
from the incentives of users to actually use it. Note that this neither excludes nor trivially deters “forking” by
a sufficiently powerful (e.g., 2/3 majority) attacker; indeed, if some transaction fees are much higher than all
others, then such an attacker might fork the network by extending both the highest and the second highest
chain with the same block containing these high-fee transactions, and keep it forked for sufficiently long until
he cashes out his rewards from both forks.

In this full-reward model, we prove the following statements:
First, we look at the worst-case environment, i.e., the one that helps the adversary maximize its expected
revenue. We prove that in this model Bitcoin is still incentive compatible, hence also strongly attack
payoff secure. In fact, the same is true if the environment makes sure that there is a sufficient supply of
transactions to the honest miners and to the adversary, such that the fees are high enough to build blocks
that reach exactly the maximal rewarding value (note that not necessarily the same set of transactions
have to be known to the participants). For example, as long as many users submit transactions with
the heaviest possible fee (so-called full-fee transactions), then the system is guaranteed to work without
relying on an honest majority of miners. In a sense, the users can control the stability of the system
through transaction fees.
Next, we investigate the question of whether or not the above is true for arbitrary transaction-fee distri-
butions. Not surprisingly, the answer here is negative, and the protocol is not even attack-payoff secure
(i.e, does not even achieve its specification). The proof of this statement makes use of the above sketched
forking argument. On the positive side, our proof suggests that in the honest-majority setting where
forking is not possible (except with negligible probability), the only way the adversary is incentivized to
deviate from the standard protocol is to withhold the transactions he is mining on to avoid risking to
lose the fees to honest parties.

Interpreting the above statements, we can relax the assumption for security of Bitcoin from requiring an
honest majority to requiring long-enough presence of sufficiently many full-fee transactions, with a fallback
to honest majority.

Finally, observing that the typically large pool of transactions awaiting validation justifies the realistic
assumption that there is enough supply to the network (and given the high adoption, this pool will not
become small too fast), we can directly use our analysis, to propose a possible modification which would
help Bitcoin, or other cryptocurrencies, to ensure incentive compatibility (hence also strong attack-payoff
security) in the full-reward model in the long run: The idea is to define an exact cumulative amount on
fees (or overall reward) to be allowed for each block. If there are enough high-fee transactions, then the
blocks are filled up with transactions until this amount is reached. As suggested by our first analysis
with a simple incentive structure, ensuring that this cap is non-decreasing would be sufficient to argue
about stability; however, it is well conceivable that such a bound could be formally based on supply-and-
demand in a more complex and economy-driven incentive structure and an interesting future research
direction is to precisely define such a proposal together with the (economical) assumptions on which the
security statements are based. We note that the introduction of such a rule would typically only induce
a “soft fork,” and would, for a high-enough combination of conversion rate and reward bound, ensure
incentive compatibility even when the flat reward per block tends to zero and the main source of rewards
would be transaction fees, as it is the plan for the future of Bitcoin.
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2 Preliminaries

In this section we introduce some notation and review the basic concepts and definitions from the literature,
in particular from [10] and [1] that form the basis of our treatment. For completeness, an expanded version
of this review can be found in Appendix A. Our definitions use and build on the simulation-based security
definition by Canetti [5]; we assume some familiarity with its basic principles.

Throughout this work we will assume an (at times implicit) security parameter κ. We use ITM to the
denote the set of probabilistic polynomial time (PPT) interactive Turing machines (ITMs). We also use the
standard notions of negligible, noticeable, and overwhelming (e.g., see [15]) were we denote negligible (in κ)
functions as negl(κ). Finally, using standard UC notation we denote by EXECΠ,A,Z (resp. EXECF,S,Z) the
random variable (ensemble if indexed by κ) corresponding to the output of the environment Z witnessing
an execution of protocol Π against adversary A (resp. an ideal evaluation of functionality F with simulator
S).

2.1 The RPD Framework

The RPD framework [10] captures incentive-driven adversaries by casting attacks as a meta-game between
two rational players, the protocol designer D and the attacker A, which we now describe. The game is
parameterized by a (multi-party) functionality F known to both agents D and A which corresponds to the
ideal goal the designer is trying to achieve (and the attacker to break). Looking ahead, when we analyze
Bitcoin, F will be a ledger functionality (cf. [1]). The designer D chooses a PPT protocol Π for realizing the
functionality F from the set of all probabilistic and polynomial-time (PPT) computable protocols.12 D sends
Π to A who then chooses a PPT adversary A to attack protocol Π. The set of possible terminal histories is
then the set of sequences of pairs (Π,A) as above.

Consistently with [10], we denote the corresponding attack game by GM, where M is referred to as the
attack model, which specifies all the public parameters of the game, namely: (1) the functionality, (2) the
description of the relevant action sets, and (3) the utilities assigned to certain actions (see below).

Stability in RPD corresponds to a refinement of a subgame-perfect equilibrium (cf. [25, Definition 97.2]),
called ε-subgame perfect equilibrium, which considers as solutions profiles in which the parties’ utilities are
ε-close to their best-response utilities (see [10] for a formal definition). Throughout this paper, we will only
consider ε = negl(κ); in slight abuse of notation, we will refer to negl(κ)-subgame perfect equilibrium simply
as subgame perfect.

The utilities. The core novelty of RPD is in how utilities are defined. Since the underlying game is zero-sum,
it suffices to define the attacker’s utility. This utility depends on the goals of the attacker, more precisely,
the security breaches which he succeeds to provoke, and is defined, using the simulation paradigm, via the
following three-step process:

First, we modify the ideal functionality F to obtain a (possibly weaker) ideal functionality 〈F〉, which
explicitly allows the attacks we wish to model. For example, 〈F〉 could give its simulator access to the parties’
inputs. This allows to score attacks that aim at input-privacy breaches.

Second we describe a scoring mechanism for the different breaches that are of interest to the adversary.
Specifically, we define a function vA mapping the joint view of the relaxed functionality 〈F〉 and the envi-
ronment Z to a real-valued payoff. This mapping defines the random variable (ensemble) v〈F〉,S,ZA as the
result of applying vA to the views of 〈F〉 and Z in a random experiment describing an ideal evaluation
with ideal-world adversary S; in turn, v〈F〉,S,ZA defines the attacker’s (ideal) expected payoff for simulator S
and environment Z, denoted by U 〈F〉IA (S,Z), so the expected value of vA

〈F〉,S,Z . The triple M = (F, 〈F〉, vA)
constitutes the attack model.

The third and final step is to use U 〈F〉IA (S,Z) to define the attackers utility, uA(Π,A), for playing an
adversary A against protocol Π, as the expected payoff of the “best” simulator that successfully simulates
A in its (A’s) favorite environment. This best simulator is the one that translates the adversary’s breaches
12 Following standard UC convention, the protocol description includes its hybrids.
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against Π into breaches against the relaxed functionality 〈F〉 in a faithful manner, i.e., so that the ideal
breaches occur only if the adversary really makes them necessary for the simulator in order to simulate.
As argued in [10], this corresponds to the simulator that minimizes the attacker’s utility. Formally, for
a functionality 〈F〉 and a protocol Π, denote by CA the class of simulators that are “good” for A, i.e,
CA = {S ∈ ITM | ∀Z : EXECΠ,A,Z ≈ EXEC〈F〉,S,Z}.13 Then the attacker’s (expected) utility is defined as:

uA(Π,A) = sup
Z∈ITM

{
inf
S∈CA

{
U
〈F〉
IA (S,Z)

}}
.

For A and Π with CA = ∅, the utility is∞ by definition, capturing the fact that we only want to consider
protocols which at the very least implement the relaxed (i.e., explicitly breachable) functionality 〈F〉. Note
that as the views in the above experiments are in fact random variable ensembles indexed by the security
parameter κ, the probabilities of all the relative events are in fact functions of κ, hence the utility is also a
function of κ. Note also that as long as CA = ∅ is non-empty, for each value of κ, both the supremum and the
infimum above exist and are finite and reachable by at least one pair (S, Z), provided the scoring function
assigns finite payoffs to all possible transcripts (for S ∈ CA) (cf. [10]).

Remark 1 (Event-based utility [10]). In many applications, including those in our work, meaningful payoff
functions have the following, simple representation: Let (E1, . . . , E`) denote a vector of (typically disjoint)
events defined on the views (of S and Z) in the ideal experiment corresponding to the security breaches
that contribute to the attacker’s utility. Each event Ei is assigned a real number γi, and the payoff function
v~γA assigns, to each ideal execution, the sum of γi’s for which Ei occurred. The ideal expected payoff of a
simulator is computed according to our definition as

U
〈F〉
IA (S,Z) =

∑
Ei∈~E,γi∈~γ

γi Pr[Ei],

where the probabilities are taken over the random coins of S, Z, and 〈F〉.
Building on the above definition of utility, [10] introduces a natural notion of security against incentive-

driven attackers. Intuitively, a protocol Π is attack-payoff secure in a given attack model M = (F, ·, vA),
if the utility of the best adversary against this protocol is the same as the utility of the best adversary in
attacking the F-hybrid ”dummy” protocol, which only relays messages between F and the environment.

Definition 1 (Attack-payoff security [10]). LetM = (F, 〈F〉, vA, vD) be an attack model inducing utilities
uA and uD on the attacker and the designer, respectively,14 and let φF be the dummy F-hybrid protocol. A
protocol Π is attack-payoff secure for M if for all adversaries A ∈ ITM,

uA(Π,A) ≤ uA(φF ,A) + negl(κ).

Intuitively, this security definition accurately captures security against an incentive-driven attacker, as in
simulating an attack against the dummy F-hybrid protocol, the simulator never needs to provoke any of the
“breaching” events. Hence, the utility of the best adversary against Π equals the utility of an adversary that
does not provoke any “bad event.”

2.2 A Composable Model for Blockchain Protocols

In [1], Badertscher et al. present a universally composable treatment of the Bitcoin protocol, ΠB, in the UC
framework. Here we recall the basic notions, the notation, and some results.

13 This class is finite for every given value of the security parameter, Π, and A.
14 In [10], by default uD = −uA as the game is zero-sum.
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The Bitcoin ledger. The ledger functionality GB
ledger maintains a ledger state state, which is a sequence of

state blocks. A state block contains (application-specific) content values—the “transactions.” For each honest
party pi, the ledger stores a pointer to a state block—the head of the state from pi’s point of view—and
ensures that pointers increase monotonically and are not too far away from the head of the state (and that it
only moves forward). Parties or the adversary might submit transactions, which are first validated by means
of a predicate ValidTxB, and, if considered valid, are added to the functionality’s buffer. At any time, the
GB

ledger allows the adversary to propose a candidate next-block for the state. However, the ledger enforces a
specific extend policy specified by an algorithm ExtendPolicy that checks whether the proposal is compliant
with the policy. If the adversary’s proposal does not comply with the ledger policy, ExtendPolicy rejects the
proposal. The policy enforced by the Bitcoin ledger can be succinctly summarized as follows:

Ledger’s growth. Within a certain number of rounds the number of added blocks must not be too small
or too large.
Chain quality. A certain fraction of the proposed blocks must be mined honestly and those blocks satisfy
special properties (such as including all recent transactions)..
Transaction liveness. Old enough (and valid) transactions are included in the next block added to the
ledger state.

We refer to Appendix A.2 and Appendix A.3 for more details on this functionality.

The Bitcoin blockchain. In [1] it was proved that (a [12]-inspired abstraction of) Bitcoin as a synchronous-
UC protocol [19], called the ledger protocol and denoted by ΠB, realizes the above ledger. ΠB uses blockchains
to store a sequence of transactions. A blockchain C is a (finite) sequence of blocks B1, . . . ,B`. Each block Bi

consist of a pointer si, a state block sti, and a nonce ni. string. The chain Cdk is C with the last k blocks
removed. The state ~st of the blockchain C = B1, . . . ,B` is defined as a sequence of its state blocks, i.e.,
~st := st1|| . . . ||st`.

The validity of a blockchain C = B1, . . . ,B` where Bi = 〈si, sti, ni〉 depends on two aspects: chain-level
validity, also referred to as syntactic validity, and a state-level validity also referred to as semantic validity.
Syntactic validity is defined with respect to a difficulty parameter d ∈ [2κ], where κ is the security parameter,
and a given hash function H : {0, 1}∗ → {0, 1}κ; it requires that, for each i > 1, the pointer si is the hash of
the previous block, i.e., si = H[Bi−1] and that additionally H[Bi] < d holds. Finding a nonce such that this
inequality holds is typically called a “proof of work.”

The semantic validity is defined on the state ~st encoded in the blockchain C and specifies whether this
content is valid with respect to ValidTxB. This is implemented as the algorithm isvalidstate which depends on
the predicate ValidTxB. isvalidstate checks that the blockchain state can be built in an iterative manner, such
that each contained transaction is considered valid according to ValidTxB upon insertion. It further ensures
that the state starts with the genesis state and that state blocks contain a special coin-base transaction
txcoin-base

minerID which assigns them to a miner. For more details refer to [1].
We denote by isvalidchainD(C) the predicate that returns 1 iff chain C satisfies syntactic and semantic

validity as defined above.

The Bitcoin protocol in UC. The Bitcoin protocol ΠB is executed in a hybrid world where parties have
access to a random oracle functionality FRO (that models the hash function H), a network FN-MC and clock
Gclock, where the clock can be assumed to be (the only) shared functionality (Security in [1] is proven for this
case, but all statements hold of course with respect to standard UC). Each party holds a local blockchain
which initially contains just the genesis block. During the execution of the protocol the chains of honest
parties might differ. However, it is ensured that they have “common prefix” [12] defining the ledger state
as long as the majority (of the computing power) is honest. New transactions are added through a “mining
process.” First, each party collects valid transactions (with respect to ValidTxB) and creates a new state
block. Next, the party makes a certain number of attempts to mine a new block which can be validly added
to their local blockchain. This mining is done using the algorithm extendchainD in [1]). The main idea of
the algorithm is to find a proof of work by querying the random oracle FRO which allows to extend the
local chain by a syntactically and semantically correct block. After each mining attempt the party uses the
network to multicast their current blockchain. If a party receives a longer chain, it uses it to replace its local
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chain. The protocol defines the ledger state to be a certain prefix of the contents of the longest chain held
by each party. More specifically, if a party holds a valid chain C that encodes the sequence of state blocks
~st, then the ledger state is defined to be ~st

dT , i.e., the party outputs a prefix of the encoded state blocks
of its local longest chain. T is chosen such that honest parties output a consistent ledger state. The overall
Bitcoin protocol is denoted by ΠB.

The flat model of computation. In this paper, we state the results in the synchronous flat model (with
fixed difficulty) by Garay et al. [12]. This means we assume a number of parties, denoted by n, that execute the
Bitcoin protocol ΠB, out of which t parties can get corrupted. For simplicity, the network FN-MC guarantees
delivery of messages sent by honest parties in round r to be available to any other party at the onset of
round r + 1. Moreover, every party will be invoked in every round and can make at most one “calculation”
query to the random oracle FRO in every round (and an unrestricted number of “verification” queries to
check the validity of received chains)15, and use the above diffusion network FN-MC once in a round to send
and receive messages.

The security of the protocol intuitively follows from the honest majority assumption: as long as the honest
mining power outperforms the dishonest parties (in the sense stated below), the ledger functionality can be
realized. To capture these restrictions in a composable treatment, the real-world assumptions are enforced
by means of a “wrapper” functionality, Wflat, which adequately restricts access to Gclock,FRO and FN-MC as
explained in [1], and thereby enforces the assumptions on the mining power distribution.

More concretely, denote by ρ the fraction of dishonest parties (i.e., t = ρ · n) and define p := d
2κ which

is the probability of finding a valid proof of work via a fresh query to FRO (where d is fixed but sufficiently
small, depending on n). Let αflat := 1 − (1 − p)(1−ρ)·n be the mining power of the honest parties, and
βflat := p · (ρ · n) be the mining power of the adversary. For this specific flat model (also known as the GKL
model with fixed difficulty), the following statement is established in [1].

Theorem 1. Consider ΠB in the Wflat(Gclock,FRO,FN-MC)-hybrid world and assume that, for some λ > 1,
the honest-majority assumption

αflat · (1− 4αflat) ≥ λ · βflat

holds (i.e., is enforced by Wflat), then protocol ΠB UC-realizes GB
ledger for a specific range of parameters (as

given in [1]).

The exact range of parameters for which Theorem 1 holds is not of primary importance in this work
and we will clarify the relevant quantities derived in [1] whenever needed to follow our exposition. Also,
as explained above, in [1] they show that EUC-realization (externalized UC) is achieved where the clock is
treated as a shared functionality. In this work, we use the standard UC framework for simplicity, but note
in passing that all ideas generalize naturally to EUC (with a shared global clock).

3 Rational Protocol Design of Ledgers

In this section we present our framework for rational analysis of the Bitcoin protocol. It uses as basis
the framework for rational protocol design (and analysis—RPD framework for short) by Garay et al. [10],
extending it in various ways to better capture Bitcoin’s features. (We refer to Section 2 and to the Appendix
for RPD’s main components and security definitions.) We note that although our analysis mainly focuses
on Bitcoin, several of the extensions have broader applicability, and can be used for the rational analysis of
other cryptocurrencies as well.

RPD’s machinery offers the foundations for capturing incentive-driven attacks against multi-party pro-
tocols for a given specification. In this section we show how to tailor this methodology to the specific task
15 This fine-grained round model with one hash query was already used by Pass et al. [26]. The extension to a larger,

constant upper bound of calculation queries per round as in [12] is straightforward for the results in this work.
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of protocols aimed to securely implement a public ledger. The extensions and generalizations of the original
RPD framework we provide add generic features to the RPD framework, including the ability to capture non-
zero-sum attack games—which, as we argue, are more suitable for the implementation of a cryptocurrency
ledger—and the extension of the class of events which yield payoff to the attacker and the designer.

The core hypothesis of our rational analysis is that the incentives of an attacker against Bitcoin—which
affect his actions and attacks—depend only on the possible earnings or losses of the parties that launch the
attack. We do not consider, for example, attackers that might create forks just for the fun of it. An attacker
might create a “fork” in the blockchain if he expects to gain something by doing so. In more detail, we
consider the following events that yield payoff (or inflict a cost) for running the Bitcoin protocol:

Inserting a block into the blockchain. It is typical of cryptocurrencies that when a party manages to insert
a block into the ledger’s state, then it is rewarded for the effort it invested in doing so. In addition, it
is typical in such protocols that the contents of the blocks (usually transactions) have some transaction
fee associated with them. (For simplicity, in our initial formalization [Sections 3 and 4] we will ignore
transaction fees in our formal statements, describing how they are extended to also incorporate also such
fees in Section 5.)
Spending resources to mine a block. These resources might be the electricity consumed for performing
the ining, the investment on mining hardware and its deterioration with time, etc.

Remark 2 (The miners/users separation principle). We remark that the scope of our work is to analyze
the security of cryptocurrencies against incentive-driven attacks by the miners, i.e., the parties that are
responsible for maintaining the blockchain. In particular, consistently with [12, 26, 1] we shall consider the
inputs to the protocol as provided by a (not-necessarily rational) environment, which in particular captures
the users of the system. As a result, other than the transaction fees, we will assume that the contents of the
ledger do not affect the miners’ strategies, which we will refer to as the miners/users separation principle.
This principle captures the case where the users do not collude with the miners—an assumption implicit in
the above works. We leave the full rational analysis of the protocol, including application layers for future
research.

There are several challenges that one needs to overcome in deriving a formal treatment of incentive-
driven attacks against Bitcoin. First, the above reward and cost mechanisms are measured in different
“units.” Specifically, the block reward is a cryptocurrency convention and would therefore be measured in
the specific cryptocurrency’s units, e.g., BTCs in the the case of the Bitcoin network. On the other hand, the
cost for mining (e.g., the cost of electricity, equipment usage, etc.) would be typically measured in an actual
currency. To resolve this mismatch—and refrain from adopting a specific currency—we introduce a variable
CR which corresponds to the conversion rate of the specific cryptocurrency unit (e.g., BTCs) to the cost unit
(e.g., euros or US dollars). As we shall see in the next section, using such an explicit exchange rate allows us
to make statements about the quality of the Bitcoin network that depend on its price—as they intuitively
should. For example, we can formally confirm high-level statements of the type: “Bitcoin is stable—i.e.,
miners have incentive to keep mining honestly—as long as its price is high enough” (cf. Section 4).

Furthermore, this way we can express all payoffs in terms of cost units: Assume that it takes r rounds
for a miner (or a collection of miners) to insert a block into the state. Denote by mcost the cost for a single
mining attempt (in our case a single RO query), and by breward the fraction of cryptocurrecy units (e.g.,
BTCs) that is given as a reward for each mined block.16 Then, the payoff for the insertion of a single block
is breward · CR − qr · mcost, where qr is the number of queries to the RO that were required to mine this
block during r rounds.

The second challenge is with respect to when should a miner receive the reward for mining. There are
several reasons why solving a mining puzzle—thereby creating a new block—does not necessary guarantee
a miner that he will manage to insert this block into the blockchain, and therefore be rewarded for it,
including the possibility of collisions—more than one miner solving the puzzle—or, even worse, adversarial
interference—e.g., network delays or “selfish mining.” And even if the miner is the only one to solve the
16 Currently, for the Bitcoin network, this is 1/4 of the original reward (12.5 BTCs).
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puzzle in a given round, he should only be rewarded for it if his block becomes part of the (permanent) state
of the blockchain—the so-called blockchain’s “common prefix.”

To overcome this second challenge we rely on the RPD methodology. In particular, we will use the ideal
experiment where parties have access to the global ledger functionality, where we can clearly identify the
event of inserting a block into the state, and decide, by looking into the state, which miner added which
block.17

In order to formalize the above intuitions and apply the RPD methodology to define the utilities in the
attack game corresponding to implementing a ledger against an incentive-driven adversary, we need to make
some significant adaptations and extensions to the original framework, which is what we do next. We then
(Section 3.2) use the extended framework to define the attack-model for the Bitcoin protocol, and conclude
the section by giving appropriate definitions of security and stability in this model.

3.1 Extending the RPD Framework

We describe how to extend the model from [10] to be able to use it in our context.

Black-box simulators. The first modification is adding more flexibility to how utilities are defined. The
original definition of ideal payoff U

〈F〉
IA (S,Z) computes the payoff of the simulator using the joint view of

the environment and the functionality. This might become problematic when attempting to assign cost to
resources used by the adversary—the RO queries in our scenario, for example. Indeed, these queries are not
necessarily in this joint view, as depending on the simulator, one might not be able to extract them.18 To
resolve this we modify the definition to restrict it to black-box simulators, resulting in CA being the class of
simulators that use the adversary as a black box. This will ensure that the queries to the RO are part of the
interaction of the simulator with its adversary, and therefore present in the view of the simulator. Further,
we include this part of the simulator’s view in the definition of the scoring function vA, which is defined now
as a mapping from the joint view of the relaxed functionality 〈F〉, the environment Z, and the simulator S
to a real-valued payoff.

Non-zero-sum attack games. The second modification is removing the assumption that the attack game
is zero-sum. Indeed, the natural incentive of the protocol designer in designing a Ledger protocol is not
to optimally “tame” its attacker—as in [10]—but rather to maximize the revenue of the non-adversarially
controlled parties while keeping the blockchain healthy, i.e., free of forks. This is an important modification
as it captures attacks in which the adversary preserves his rate of blocks inserted into the state, but slows
down the growth of the state to make sure that honest miners accrue less revenue in any time interval.
For example, the so called “selfish-mining” strategy [8] provokes a slowdown since honest mining power is
invested into mining on a chain which is not the longest one (as the longest chain is kept private as long as
possible by the party that does the selfish-mining).

To formally specify the utility of the designer in such a non-zero-sum attack game, we employ a similar
reasoning as used in the original RPD framework for defining the attacker’s utility. The first step, relaxing
the functionality, can be omitted provided that we relaxed it sufficiently in the definition of the attacker’s
utility. In the second step, we define the scoring mechanism for the incentives of the designer as a function
vD mapping the joint view of the relaxed functionality 〈F〉, the environment Z, and the simulator S to
a real-valued payoff, and define the designer’s (ideal) expected payoff for simulator S with respect to the
environment Z as

U
〈F〉
ID (S,Z) = E(v〈F〉,S,ZD ),

where v〈F〉,S,ZD describes (as a random variable) the payoff of D allocated by S in an execution using directly
the functionality 〈F〉.

The third and final step is the trickiest. Here we want to use the above ideal expected payoff to define
the expected payoff of a designer using protocol Π when the attacker is playing adversary A. In order to
17 In [1], each block of the state includes the identifier of the miner who this block is attributed to.
18 Indeed, in the ideal simulation of the Bitcoin protocol presented in [1], there is no RO in the ideal world.
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ensure that our definition is consistent with the original definition in [10]—which applied to (only) zero-sum
games—we need to make sure that the utility of the designer increases as the utility of the attacker decreases
and vice versa. Thus, to assign utility for the designer to a strategy profile (Π,A), we will use the same
simulators and environments that were used to assign the utility for the attacker. Specifically, let SA denote
the class of simulators that are used to formulate the utility of the adversary, and let ZA denote the class of
environments that maximize this utility for simulators in SA

19, then

SA =
{
S ∈ CA s.t. sup

Z∈ITM
{U 〈F〉IA (S,Z)} = uA(Π,A)

}
(1)

and
ZA =

{
Z ∈ ITM s.t. for some S ∈ SA : U

〈F〉
IA (S,Z)} = uA(Π,A)

}
. (2)

It is easy to verify that this choice of simulator respects the utilities being opposite in a zero-sum game
as defined in [10], thereby preserving the results following the original RPD paradigm.

Lemma 1. Let vD = −vA and let U 〈F〉ID (S,Z) defined as above. For some S ∈ SA and some Z ∈ ZA, define
uD(Π,A) := U

〈F〉
ID (S,Z). Then uD(Π,A) = −uA(Π,A).

Proof. Since vD = −vA, we have that for all Z,S ∈ ITM,

U
〈F〉
ID (S,Z) = −U 〈F〉IA (S,Z). (3)

However, by definition, since S ∈ SA, we have

uA(Π,A) = U
〈F〉
IA (S,Z) 3= −U 〈F〉ID (S,Z) = −uD(Π,A).

ut

The above lemma confirms that for a zero-sum attack game we can take any pair (S,Z) ∈ SA×ZD in the
definition of uD(Π,A) and it will preserve the zero-sum property (and hence all the original RPD results).
This is so because all these simulators induce the same utility −uA(Π,A) for the designer. However, for
our case of non-zero-sum games, each of those simulator/environment combinations might induce a different
utility for the designer. To choose the one which most faithfully translates the designer’s utility from the
real to the ideal world we use the same line of argument as used in RPD for defining the attacker’s utility:
The best (i.e., the most faithful) simulator is the one which always rewards the designer whenever his
protocol provokes some profitable event; in other words, the one that maximizes the designer’s expected
utility. Similarly, the natural environment is the one that puts the protocol in its worst possible situation,
i.e., the one that minimizes its expected gain; indeed, such an environment will ensure that the designer is
guaranteed to get his allocated utility. The above leads to the following definition for the designer’s utility
in non-zero-sum games:

uD(Π,A) := inf
Z∈ZA

{
sup
S∈SA

{
U
〈F〉
ID (S,Z)

}}
.

For completeness, we set uD(Π,A) = −∞ if CA = ∅, i.e., if the protocol does not even achieve the relaxed
functionality. This is not only intutive—as CA = ∅ means that the designer chose a protocol which does not
even reach the relaxed goal—but also analogous to how RPD defines the attacker’s utility for protocols that
do not achieve their relaxed specification.20

Finally, the attack model for non-zero-sum games is defined as the quadruple M = (F, 〈F〉, vA, vD).

3.2 Bitcoin in the RPD Framework

Having formulated the above extensions to the RPD framework, we are ready to apply the methodology to
analyze Bitcoin.
19 Recall that as argued in Section 2.1, these sets are non-empty provided CA 6= ∅.
20 Recall that RPD sets uA(Π,A) =∞ if A cannot be simulated, i.e., if CA = ∅.
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Basic foundations. We explain in more depth on how to implement the core steps of RPD. First, we define
the Ledger functionality from [1] as Bitcoin’s ideal goal (see Section 2.2). Following the three steps of the
methodology, we start by defining the relaxed version of the Ledger, denoted as GB

weak-ledger. Informally, the
relaxed Ledger functionality operates as the original ledger with the following modifications:

The state is a tree: Instead of storing a single ledger state state as a straight-line blockchain-like struc-
ture, GB

weak-ledger stores a tree state-tree of state blocks where for each node the direct path from
the root defines a possible ledger state that might be presented to any of the honest miners. The func-
tionality maintains for each registered party pi ∈ P a pointer pti to a node in the tree which defines
pi’s current-state view. Furthermore, instead of restricting the adversary to only be able to set the state
“slackness” to be not larger than a specific parameter, GB

weak-ledger offers the command set-pointer
which allows the adversary to set the pointers of honest parties within state-tree with the following
restriction: The pointer of an honest party can only be set to a node whose distance to the root is at
least the current-pointer node’s.

Relaxed validity check of transactions: All submitted transactions are accepted into the buffer buffer
without validating against state-tree. Moreover, transactions in buffer which are added to state-tree
are not removed as they could be reused at another branch of state-tree.

Ability to create forks: This relaxation gives the simulator the explicit power to create a fork on the
ledger’s state. This is done as follows: The command next-block—which, recall, allows the simulator
to propose the next block—is modified to allow the simulator to extend an arbitrary leaf of a sufficiently
long rooted path of state-tree. Thus, when state-tree is just a single path, this command operates as
in the original ledger from [1]. Additionally, in the relaxed ledger, the simulator is also allowed to add the
next block to an intermediate, i.e., non-leaf node of state-tree. This is done by using an extra command
fork which, other than extending the chain from the indicated block provides the same functionality as
next-block.

Relaxed state-extension policy: As explained in Section 2.2, the extend policy is a compliance check
that the ledger functionality performs on blocks that the simulator proposes to be added to the ledger’s
state. This is to ensure that they satisfy certain conditions. This is the mechanism which the ledger func-
tionality uses to enforce, among others, common generic-ledger properties from the literature, such as the
chain quality or the chain growth properties, and for Bitcoin ledgers the transaction-persistence/stability
properties [12, 26]. of the ledger state, or on transaction persistence/stability [12].
The relaxed ledger uses a much more permissive extend policy, denoted as weakExtendPolicy, derived
from ExtendPolicy with the following modifications: Intuitively, in contrast to ExtendPolicy, the weaker
version does not check if the adversary inserts too many or too few blocks, and it does not check if all
old-enough transactions have been included. There is also no check of whether enough blocks are mined
by honest parties, i.e., that there are enough blocks with coin-base transactions from honest parties. In
other words, weakExtendPolicy does not enforce any concrete bounds on the chain quality or the chain
growth properties of the ledger state, or on transaction persistence/stability. It rather ensures basic
validity criteria of the resulting ledger state.
More formally, instead of state, it takes state-tree and a pointer pt as input. It first computes a valid
default block ~Ndf which can be appended at the longest branch of state-tree. It then checks if the
proposed blocks ~N can be safely appended to the node pt (to yield a valid state). If this is the case it
returns ( ~N, pt); otherwise it returns ~Ndf and a pointer to the leaf of the longest branch in state-tree.

For completeness we have included the formal description of the relaxed ledger functionality as Supple-
ment B. This completes the first step of the RPD methodology.

The second step is defining the scoring function. This is where our application of RPD considerably devi-
ates from past works [10, 11]. In particular, those works consider attacks against generic secure multi-party
computation protocols, where the ideal goal is the standard secure function evaluation (SFE) functionality
(cf. [5]). The security breaches are breaking correctness and privacy [10] or breaking fairness [11]. These can
be captured by relaxing the SFE functionality to allow the simulator to request extra information (breaking
privacy), reset the outputs of honest parties to a wrong value (breaking correctness), or cause an abort
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(breaking fairness.) The payoff function is then defined by looking at events corresponding to whether or not
the simulator provokes these events, and the adversary is given payoff whenever the best simulator is forced
to provoke them in order to simulate the attack.

However, attacks against the ledger that have as an incentive increasing the revenue of a coalition are not
necessarily specific events corresponding to the simulator sending special “break” commands. Rather, they
are events that are extracted from the joint views (e.g., which blocks make it to the state and when). Hence,
attacks to the ledger correspond to the simulator implicitly “tweeking” its parameters. Therefore, in this work
we take the following approach to define the payoffs of the attacker and designer. In contrast to the RPD
examples in [10, 11], which use explicit events that “downgrade” the ideal functionality for defining utility,
we directly use more intuitive events defined on the joint view of the environment, the functionality, and
the simulator. The reason is that as we have assumed that the only rationale is to increase one’s profit, the
incentives in case of cryptocurrencies are as follows: whenever a block is mined, the adversary gets rewarded.
A “security breach” is relevant if (and only if) the adversary can get a better reward by doing so.

Defining concrete utility functions. Defining the utility functions lies at the core of a rational analysis
of a blockchain protocol like Bitcoin. The number of aspects that one would like to consider steers the
complexity of a concrete analysis, the ultimate goal being to reflect exactly the incentive structure of the
actual blockchain ecosystem. Our extended RPD framework for blockchain protocols provides a guideline
to defining utility functions of various complexity and to conduct the associated formal analysis. Recall
that the utility functions are the means to formalize the assumed underlying incentive structure. As such,
our approach is extensible: if certain relevant properties or dynamics are identified or believed (such as
reflecting a doomsday risk of an attacker or a altruistic motivation of honest miners), one can enrich the
incentive structure by reflecting the associated events and rewards in the utility definition, or by making the
costs and rewards time-dependent variables. The general goal of this line of research on rational aspects of
cryptocurrencies is to eventually arrive at a more detailed model and, if the assumptions are reasonable, to
have more predictive models for reality.

Below we define a first, relatively simple incentive model to concretely showcase our methodology. We
conduct the associated rational analysis in the next section and observe that, although being a simplified
model, we can already draw interesting conclusions from such a treatment.

Utility of the attacker. Informally, this particular utility is meant to capture the average revenue of the
attacker. Consider the following sequence of events defined on the views of the environment, the relaxed
ledger functionality, and the black-box simulator of the entire experiment (i.e., until the environment halts)
for a given adversary A:
1. For each pair (q, r)∈N2 define event W A

q,r as follows: The simulator makes q mining queries in round r,
i.e., it receives q responses on different messages to the RO in round r.21

2. For each pair (b, r) ∈ N2 define event IA
b,r as follows: The simulator inserts b blocks into the state of

the ledger in round r, such that all these blocks were previously queries to the (simulated) random
oracle by the adversary. More formally, IA

b,r occurs if the function extend policy (of the weak ledger) is
successfully invoked and outputs a sequence of b non-empty blocks (to be added to the state), where
for each of these blocks the following properties hold: (1) The block has appeared in the past in the
transcript between the adversary and the simulator, and (2) the contents of the block have appeared on
this transcript prior to the block’s first appearance, as a query from the the adversary to its (simulated)
RO. We note in passing that this event definition ensures that the simulator (and therefore also the
adversary) does not earn reward by adaptively corrupting parties after they have done the work/query
to mine a block but before their block is added into the state. In other words, the adversary only gets
rewarded for state blocks which corrupted parties mined while they where already under the adversary’s
control.

21 Observe that since our ideal world is the Gclock-hybrid synchronous world, the round structure is trivially extracted
from the simulated ideal experiment by the protocol definition and the clock value. Furthermore, the adversary’s
mining queries can be trivially extracted by its interaction with the black-box simulator.
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Now, using the simplified event-based utility definition (Remark 1) we define the attacker’s utility for a
strategy profile (Π,A) in the attack game as:22

uB
A (Π,A) = sup

Z∈ITM

{
inf

SA∈CA

{ ∑
(b,r)∈N2

b · breward · CR · Pr[IA
b,r]

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r]
}}

.

We remark that although the above sums are in principle infinite, in any specific execution these sums
will have only as many (non-zero) terms as the number of rounds in the protocol. Indeed, if the experiment
finishes in r′ rounds then for any r > r′, Pr[IAb,r] = Pr[WAq,r] = 0 for all b ∈ N. Furthermore, we assume that
breward, CR and mcost are O(1), i.e., independent of the security parameter.

The above expression can be simplified to the following more useful expression. Let BA denote the random
variables corresponding to the number of blocks contributed to the ledger’s state by adversarial miners and
QA denote the number of queries to the RO performed by adversarial miners (throughout the execution of the
random experiment). Then the adversary’s utility can be described using the expectations of these random
variables as follows:

uB
A (Π,A) = sup

Z∈ITM

{
inf

SA∈CA

{
breward · CR · E(BA)− mcost · E(QA)

}}
.

Utility of the designer. Since the game is not zero-sum we also need to formally specify the utility of
the protocol designer. Recall that we have assumed that, analogously to the attacker, the designer accrues
utility when honest miners insert a block into the state, and spends utility when mining—i.e., querying the
RO. In addition, what differentiates the incentives of the designer from that of an attacker is that his most
important goal is to ensure the “health” of the blockchain, i.e., to avoid forks. To capture this, we will assign
a cost for the designer to the event the simulator is forced to request the relaxed ledger functionality to
fork, which is larger than his largest possible gain. This yields the following events that are relevant for the
designer’s utility.

1. For each pair (q, r) ∈ N2 define WΠ
q,r as follows: The honest parties, as a set, make q mining queries in

round r. 23

2. For each pair (b, r) ∈ N2 define IΠb,r as follows: The honest parties jointly insert b blocks into the state of
the ledger in round r; that is, the simulator inserts b blocks into the state of the ledger in round r, such
that for each of these blocks, at least one of the two properties specified in the the above definition of
IA
b,r does not hold.24

3. For each r ∈ N define Kr as follows: The simulator uses the fork command in round r.

The utility of the designer is then defined similarly to the attacker’s, where we denote by SA the class of
simulators that assign to the adversary his actual utility (cf. Equation 1):

uB
D (Π,A) = inf

Z∈Z

{
sup
SA∈SA

{ ∑
(b,r)∈N2

b · CR · (breward·Pr[IΠb,r]− 2polylog(κ) · Pr[Kr])

−
∑

(q,r)∈N2

q · mcost · Pr[WΠ
q,r]
}}

.

22 Recall that we assume synchronous execution as in [1] where the environment gets to decide how many rounds it
wishes to witness.

23 Note that although there is no RO in the ideal model of [1], whenever a miner would make such a query in
the Bitcoin protocol, the corresponding dummy party sends a special maintain-ledger command to the Ledger
functionality, making it possible for us to count the mining queries also in the ideal world.

24 By definition, these two properties combined specify when the adversary should be considered the recipient of the
reward.
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At first glance, the choice of 2polylog(κ) might seem somewhat arbitrary. However, it is there to guaran-
tee that if the ledger state forks (recall that this reflects a violation of the common-prefix property) with
noticeable probability, then the designer is punished with this super-polynomially high penalty to make his
expected payoff negative as κ grows. On the other hand, if the probability of such a fork is sufficiently small
(e.g. in the order of 2−Ω(κ)), then the loss in utility is made negligible. This, combined with the fact that
our stability notions will render negligible losses in the utility irrelevant, will allow the designer the freedom
to provide slightly imperfect protocols, i.e., protocols where violations of the common-prefix property occur
with sufficiently small probability.

We will denote by MB the Bitcoin attack model which has GB
ledger as the goal, 〈GB

ledger〉 as the relaxed
functionality, and scoring functions for the attacker and designer inducing utilities uB

A and uB
D , respectively.

3.3 Attack-Payoff Security and Incentive Compatibility

The definition of the respective utilities for designer and attacker completes the specification of an attack
game. Next, we define the appropriate notions of security and stability as they relate to Bitcoin and discuss
their meaning.

We start with attack-payoff security [10], which, as already mentioned, captures that the adversary would
have no incentive to make the protocol deviate from a protocol that implements the ideal specification
(i.e., from a protocol that implements the ideal [non-relaxed] ledger functionality), and which is useful in
arguing about the resistance of the protocol against incentive-driven attacks. However, in the context of
Bitcoin analysis, one might be interested in achieving an even stronger notion of incentive-driven security,
which instead of restricting the adversary to strategies that yield payoff as much as the ideal ledger GB

ledger
from [1] would, restricts him to play in a coordinated fashion but passively, i.e., follow the mining procedure
mandated by the Bitcoin protocol, including announcing each block as soon as it is found, but ensure that
no two corrupt parties try to solve the same puzzle (i.e., use the same nonce).

One can think of the above strategy as corresponding to cooperating mining-pools which run the standard
Bitcoin protocol. Nonetheless, as the adversary has control over message delays, he is able to make sure that
whenever he finds a new block in the same round as some other party, his own block will be the one propagated
first25, and therefore the one that will be added to the blockchain. Note that a similar guarantee is not there
for honest miners as in the event of collisions—two miners solve a puzzle in the same round—the colliding
miners have no guarantee about whose block will make it. We will refer to such an adversary that sticks to
the Bitcoin mining procedure but makes sure his blocks are propagated first as front running.

Definition 2 (Front-running, passive mining adversary). The front-running adversarial strategy Afr
is specified as follows: Upon activation in round r > 0, Afr activates in a round-robin fashion all its (pas-
sively) corrupted parties, say p1, . . . , pt. When party pi generated some new message to be sent through the
network, Afr immediately delivers m to all its recepients.26 In addition, upon any activation, any message
submitted to the network FN-MC by an honest party is maximally delayed.

Note that there might be several front-running, passive mining strategies, depending on which parties
are corrupted and (in case of adaptive adversaries) when. We shall denote the class of all such adversary
strategies by Afr. We are now ready to provide the definition of (strong) attack-payoff security for Bitcoin.
The definition uses the standard notion of negl-best-response strategy from game theory: Consider a two-
player game with utilities u1 and u2, respectively. A strategy for m1 of p1 is best response to a strategy m2
of p2 if for all possible strategies m′1, u1(m′1,m2) ≤ u1(m1,m2) + negl(κ). For conciseness, in the sequel we
will refer to negl-best-response simply as best-response strategies.

Definition 3. A protocol Π is strongly attack-payoff secure for attack model MB if for some A ∈ Afr the
attacker playing A is a (negl-)best-response to the designer playing Π.
25 This can be thought of as a “rushing” strategy with respect to network delays.
26 I.e., Afr sets the delay of the corresponding transmissions to 0.
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Remark 3. It is instructive to see that for such a weak class of adversaries the usual blockchain properties hold
with very nice parameters 27: first, the common-prefix property is satisfied except with negligible probability
(as no intentional forks are provoked by anyone). Second, the fraction of honest blocks (in an interval of say k
blocks) is roughly α

α+β
p�1
≈ (1−ρ)np

(1−ρ)np+ρnp = (1− ρ) and thus, in expectation, the chain quality corresponds to
the relative mining power of honest parties. Finally, since the adversary does contribute his mining power to
the main chain, the number of rounds it takes for the chain to grow by k blocks is in expectation k

α+β
p�1
≈ k

np .

Security thus means that if the honest parties stick to their protocol then the adversary has no incentive
to deviate. However, unlike in [10], where the game is zero-sum, in a non-zero-sum setting it does not imply
that the designer has an incentive to stick to the protocol. This means that the definition is useful to answer
the question whether, assuming the network keeps mining, some of the miners have an incentive to deviate
from the protocol, but it does not address the question of why the honest miners would keep mining. To
address this question, we adopt the notion of incentive compatibility (IC).

Informally, a protocol being incentive-compatible means that both the attacker and the designer are
willing to stick to it. In other words, it is strongly attack-payoff secure—i.e., the adversary will run it if
the honest parties do—and if the adversary plays it passively (and front-running), then the honest miners
will have an incentive to follow the protocol—i.e., the protocol is the designer’s best response to a passive
front-running adversary. We note that requiring IC for Bitcoin for the class of all possible protocols would
imply a proof that Bitcoin is not only a protocol that the miners wish to follow, but also that there is no
other protocol that they would rather participate in instead. This is clearly too strong a requirement, even
more so in the presence of results [12, 27] that argue that there are alternative “fairer” blockchain protocols
which improve on the miners’ expected revenue. Thus, we can only hope to make such statements for a
subclass of possible protocols, and therefore devise a version of IC which is parameterized by the set of all
acceptable deviations (i.e., alternative protocols) �. For full generality, we also parameterize it with respect
to the class of acceptable adversaries A, but stress that all statements in this work are for the class of all
(PPT) adversaries.

Towards providing the formal definition of IC, we first give the straightforward restriction of equilibrium
(in our case, subgame-perfect equilibrium) to a subset of strategies.

Definition 4. Let � and A be sets of possible strategies for the designer and the attacker, respectively. We
say that a pair (Π,A) ∈ (�,A) is a (�,A)-subgame perfect equilibrium in the attack game defined by model
M, if it is a (negl(κ)-)subgame-perfect equilibrium on the restricted attack game where the set of all possible
deviations of the designer (resp., the attacker) is � (resp., A).

The formal definition of (parameterized) IC is then as follows:

Definition 5. Let Π be a protocol and � be a set of polynomial-time protocols that have access to the same
hybrids as Π. We say that Π is �-incentive compatible (�-IC for short) in the attack model M iff for some
A ∈ Afr, (Π,A) is a (�, ITM)-subgame-perfect equilibrium in the attack game defined by M.

4 Analysis of Bitcoin without Transaction Fees

In this section, we present our RPD analysis of Bitcoin for the concrete incentive structure MB defined in
the previous section. We note that this incentive structure does not, in particular, reflect rewards that stem
from transaction fees and hence the reward per block is constant. First, in Section 4.1, we prove that Bitcoin
is strongly attack-payoff secure—i.e., if the designer plays it, the attacker is better off sticking to it as well
(but in a front-running fashion). The result is independent of the distribution of computing power to honest
vs adversarial miners and independent of the conversion rate or the values of breward and mcost.
27 Recall the notation introduced in Section 2.2: n denotes the number of parties, ρ the fraction of corrupted parties,
α and β denote honest and dishonest mining power, respectively, and p is the probability of a fresh RO-query to
return a correct PoW solution.
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Subsequently, in Section 4.2, we investigate the role of mining costs vs conversion rate vs block rewards
for the stability (i.e., IC) of Bitcoin in the presence of such incentive-driven coordinated coalitions (e.g.,
utility-maximizing mining pools.) We devise conditions on these values that either make the utility of honest
parties negative—hence make playing the Bitcoin protocol a sub-optimal choice of the protocol designer,
or yield high enough utility for mining that makes Bitcoin optimal among all possible deviations from
the standard protocol that are still compatible with the Bitcoin network (i.e., produce valid blockchains);
combining this with the results from Section 4.1, we deduce that for this latter range of parameters Bitcoin
is incentive-compatible.

4.1 Attack-Payoff Security of Bitcoin (without Fees)

The attack-payoff security of Bitcoin without fees is stated in the following theorem.

Theorem 2. The Bitcoin protocol is strongly attack-payoff secure in the attack model MB.

Proof. The theorem follows as a direct corollary of the following general lemma.

Lemma 2. Given any adversarial strategy, there is a front-running, semi-honest mining adversary A that
achieves better utility. In particular, the adversarial strategy A makes as many RO-queries per round as
allowed by the real-world restrictions, and one environment that maximizes its utility is the environment Z
that activates A as the first ITM in every round until A halts.

Proof intuition. The proof of the lemma consists of three steps. First, we analyze Bitcoin in the real world.
By invoking the subroutine-replacement theorem from [10, Theorem 6], we are able to work in a hybrid world
where we can easily compute the relevant values, such as the number of blocks an adversary can mine in a
given interval of rounds (the hybrid world is the so-called state-exchange hybrid world of [1] which we quickly
recall in Appendix C. Second, we show by a generic argument that this real-world analysis is sufficient to
compute the payoffs for the attacker (which is defined on the transcript in the ideal world). Last but not least,
we make a case distinction whether the adversary has expected utility smaller than zero (in which he does
not corrupt any party and does not participate in the network), or whether mining Bitcoin is profitable for
the attacker. In both cases, we prove that for any attacker A, we can devise a front-running and semi-honest
mining adversary which gets higher utility. The formal proof of the lemma is found in Appendix D. ut

4.2 Incentive Compatibility of Bitcoin (Without Fees)

We proceed by investigating how the IC of Bitcoin depends on the relation between rewards and the con-
version rate. Concretely, we describe a sufficient condition for IC (Theorem 4) and a condition that makes it
non-IC (Theorem 3). We start with the negative result, which, informally, says that if the expected costs are
too high with respect to the expected rewards, then Bitcoin is not IC (although it is strongly attack-payoff
secure as proved above). As above, we denote by p the probability of solving a proof of work (and hence
being a candidate to extend the ledger state) using one query to the random oracle (or equivalently, that a
query to the state-exchange functionality successfully extends a state).

Theorem 3. For n > 0 and breward · CR < mcost
p the Bitcoin protocol is not incentive compatible.

The proof is a straightforward calculation of the utility for the designer per round. Under the above
condition, this expectation is less than 0, since they spend (on average) more on queries than what the
reward compensates. Hence, the best response would be a protocol that does nothing.

While the above condition implies that the Bitcoin protocol is not a stable solution for all choices of the
rewards, costs, and CR, we next provide conditions under which the standard Bitcoin protocol is in fact a
stable solution in the attack game. For this, we need to compare it to arbitrary alternative strategies that
produce valid blocks for the Bitcoin network. Informally, our condition for IC requires that CR and breward
are sufficiently higher than the costs.
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Theorem 4. Consider the real world consisting of the random oracle functionality FRO, the diffusion net-
work FN-MC, and the clock Gclock, and let Wflat(·) be the wrapper that formalizes the restrictions of the flat
model.28 Consider the class �isvalidchainH,d(·) of protocols Π that are defined for the Wflat(Gclock,FRO,FN-MC)-
hybrid world and which are compatible with the Bitcoin network, i.e., which obey the following two restrictions:

1. With probability 1, the real-world transcript (i.e., the real-world UC-execution of Π, any environment
and adversary) does not contain a chain C with isvalidchainH,d(C) = 0 and this chain was an output to
the network from an uncorrupted protocol instance running Π.

2. Upon input (read, sid) to a protocol instance, the return value is (read, sid, ~st
dT ) (for some integer T ),

where ~st
dT denotes the prefix of the state ~st encoded in the longest valid chain C received by this protocol

instance.

With respect to the class �isvalidchainH,d(·), the Bitcoin protocol is an incentive-compatible choice for the
protocol designer if Bitcoin is profitable as in Lemma 3, i.e., if we are in the region breward · CR > n·mcost

p ,
and if

breward · CR >
mcost

p · (1− p)n−1 . (4)

Remark 4. Formula 4 constitutes a stronger requirement than the mere condition that mining should be
profitable (which we treat separately in Lemma 3 for completeness). The theorem says that the probability
that a fixed miner is uniquely successful stands in a reasonable relation to the mining cost and block rewards
to achieve a stable solution. While Bitcoin would already yield positive utility to the protocol designer in
the case of breward · CR > n·mcost

p , we have for large n, mcost
p · n ≤ mcost

p · ( 1
1−p )n−1 (for p ∈ (0, 1)).

Proof intuition. The proof follows by demonstrating, in a sequence of claims, that the actual choices of the
Bitcoin protocol (i.e., our abstraction of it) are optimal under the conditions of the theorem. This includes
proving that the assumed resources cannot be employed in a way that would yield better payoff to the protocol
designer. Intuitively, if the protocol has to be compatible with the Bitcoin network (i.e., it has to produce
valid chains with probability 1), and invest its resources to achieve the optimum reward vs. query ratio in a
setting where it knows it is running against front-running adversary running Bitcoin (such as mining pools).
Optimality under the theorem’s condition follows by deducing a couple of useful properties from the fact
that the protocol has to work potentially independently (per round) and by computing (and maximizing)
the distribution of the possible query-vs.-reward ratios. The formal proof is found in Appendix D. ut

We note that the above conditions are not necessarily tight. Thus one might wonder whether we can prove
or disprove their tightness, and in the latter case investigate tight conditions for the statements to hold. We
conclude this section with the following lemma which serves as first partial attempt to investigate this gap.
The lemma implies that there might be potential to prove (partial) IC even for values of the parameters
that fall in the gap between the above theorems. We leave the thorough investigation of this gap in terms of
stability as a future research direction.

Lemma 3. If breward·CR > n·mcost
p then the Bitcoin protocol yields, with overwhelming probability, a positive

utility for the protocol designer in the presence of front-running adversaries, i.e., the Bitcoin protocol is
profitable in such a setting.

5 Analysis of Bitcoin with Transaction Fees

Recall that in our formal treatment a chain C encodes a ledger state ~st. A ledger state is a sequence of indi-
vidual state-blocks, i.e., ~st = st1|| . . . ||st`. In addition, each state-block st ∈ ~st (except the genesis state)
28 Recall from [1] that we model restrictions by using functionality wrappers. The above implemented restrictions

correspond to the so-called flat model of Bitcoin, where each party gets one query to the random oracle per round
and can send and receive one vector of messages in each round.
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of the state encoded in the blockchain has the form st = Blockify( ~N) where ~N is a vector of transactions,
i.e., ~N = tx1, . . . , txk. A transaction txi can be seen as the abstract content of a block. Our above analysis
assumes that the contents of the blocks do not affect the incentives of the attacker and the designer. In the
real-world execution of Bitcoin, however, this is not the case as the contents of the blocks are money-like
transactions and have transaction fees associated with them. We model these using positive-valued function
tx 7→ f(tx) mapping individual transactions to a positive real value that are integer multiples of 1 Satoshi
(equals 10−8 Bitcoin).29 For sake of brevity, we will also denote by f̂(st) :=

∑
tx∈st f(tx) the sum of all

fees contained in the state block st. The fees have to be considered when defining the utilities in a rational
analysis since they are added to the (flat) block reward and the total sum is given as a reward to the miner
who inserts the block into the ledger state. Hence, this section treats the case where overall block rewards
can be a dynamic quantity. In fact, the plan for Bitcoin is to eventually drop the block rewards at which
point mining will be incentivized exclusively by the associated transaction fees. In this section we study the
security and stability of the Bitcoin network incorporating also such fees.

5.1 Utility Functions with Fees

We first have to change the definition of the utility functions to incorporate that the attacker and the designer
receive a different reward when inserting a block into the ledger state. The difference are the transactions
fees. To this end, we first introduce a set TZ which contains all transactions that are submitted by the
environment (and in particular not by the adversary), and then define the relevant events to capture fees in
our model.30

– In an execution, let TZ be the set of transactions such that tx ∈ TZ if and only if tx first appeared
as an input from the environment (i.e., the first occurrence of tx is in a command (submit, tx) in this
execution).

– For each (µ, r) ∈ N2 the event F A
r,µ is defined as follows: F A

r,µ denotes the event that the total sum of
the transaction fees f(tx) of all tx ∈ TZ contained in the blocks that the adversary adds to the state in
round r is equal to µ · 10−8 · CR cost units.31

– For each (µ, r) ∈ N2 let the event F D
r,µ be defined as follows: F D

r,µ is the event that the total sum of the
transaction fees f(tx) of all tx ∈ TZ contained in the blocks that the honest miners (jointly) add to the
state in round r is equivalent to µ · 10−8 · CR cost units.

Since it is the environment that decides on the block-content, the sum of the fees in each block is
effectively a random variable whose distribution is induced by the environment. The utilities of the attacker
and designer that incorporate fees are defined as follows (we use ûB

A and ûB
D to denote the utilities when fees

are added to the incentives):

ûB
A (Π,A) = sup

Z∈ITM

{
inf

SA∈CA

{
breward · CR · E(BA)− q · mcost · E(QA)

+
∑

(µ,r)∈N2

µ · 10−8 · CR · Pr[F A
r,µ]
}}

and

29 Note that this modeling aspect is not sensitive to the basic unit of measurement.
30 Note that we assume that only transactions submitted by the environment can yield fees, since the environment

models “the application layer”. In particular, if the adversary creates a transaction on his own and includes it in
his next mined block, then this should not assign him any payoff.

31 Recall that CR is the conversion of one cryptocurrency unit (e.g., one bitcoin) to one cost unit (e.g., one US dollar).
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ûB
D (Π,A) = inf

Z∈Z

{
sup
SA∈SA

{ ∑
(b,r)∈N2

b · CR · (breward · Pr[ID
b,r]− 2polylog(κ) · Pr[Kr])

−
∑

(q,r)∈N2

q · mcost · Pr[W D
q,r] +

∑
(µ,r)∈N2

µ · 10−8 · CR · Pr[F D
r,µ]
}}

.

Note that the multiplicative factor 10−8 is there to allow us to set µ to the integer multiple of one Satoshi
that the fee yields. We will denote by M̂B the Bitcoin attack model which has GB

ledger as the goal, 〈GB
ledger〉

as the relaxed functionality, and scoring functions for the attacker and designer inducing utilities ûB
A and ûB

D .

Upper bounds on fees and total reward for blocks. In reality, transaction fees and the overall reward
of a block are naturally bounded (either by size limits or by restricting the total value of the system).32 In the
following, we assume that for all tx, f(tx) ≤ maxfee, and that the sum of fees per block is bounded, yielding an
upper bound on the total profit per block: For all state blocks st we require that breward+f̂(st) ≤ maxblock,
where maxfee and maxblock are (strictly) positive multiples of one Satoshi.

Restrictions on the availability of transactions. So far in our treatment, the environment induces a
distribution on the available transactions and is in principle unrestricted in doing so. For example, the set TZ
is not bounded in size except by the running time of Z. As will become apparent below in Theorem 5, putting
no restrictions on the set TZ can still lead to meaningful statements that apply, for example, to applications
that are believed to generate an (a priori) unbounded number of transactions. However, to model different
kinds of scenarios that appear in the real world, we have to develop a language that allows us to speak about
limited availability of transactions. To this end, we introduce parameterized environments ZD. More precisely,
let D be an oracle which takes inputs (NextTxs, r) and returns a vector ~Tr = (tx1, pi1), . . . , (txk, pik). We
say that an environment is D-respecting, if, in every round r, the environment queries the oracle D and only
transactions tx ∈ ~Tr are added to TZ . We further require that Z submits (submit, txi) to party pk in round
r if and only if (txi, pk) ∈ ~Tr. For simplicity, we call D simply a distribution. The utility for the attacker in
such environments is taken to be the supremum as above, but only over all D-respecting environments.

5.2 Analysis of Bitcoin (with Fees)

The following theorem says that if we look at unrestricted environments, then Bitcoin is still incentive
compatible. This is a consequence of Theorem 2 and Theorem 4 and proven formally in Appendix D.

Theorem 5. Consider arbitrary environments and let the sum of the transaction fees per block be bounded
by maxblock > 0. Then the Bitcoin protocol is strongly attack-payoff secure in the attack model M̂B. It is
further incentive-compatible with respect to the class of protocols that are compatible with the Bitcoin network
under the same conditions as in Theorem 4), i.e., if

breward · CR >
mcost

p · (1− p)n−1 .

The previous statement is void in case the flat block reward is 0. However, for certain types of distributions
D, namely, the ones that provide sufficient high-fee transactions to the participants, it will remain in an
equilibrium state. The statement is proven in Section D.

Theorem 6. Consider distributions D with the following property: In every round, D outputs a vector of
transactions such that any party gets as input a list of transactions to build a valid next state block st to
extend the longest chain and such that f̂(st) = maxblock holds (where maxblock > 0). Then, with respect
to D-respecting environments, the Bitcoin protocol is strongly attack-payoff secure in the attack model M̂B.
It is further incentive compatible with respect to the class of protocols that are compatible with the Bitcoin
network (as defined in Theorem 4) if maxblock · CR > mcost

p·(1−p)n−1 .

32 For example, the number of total Bitcoins is limited and the block-size is bounded.
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However, if an application cannot provide enough transactions, it becomes problematic, as the following
counterexample shows.

Theorem 7. There exist distributions D such that the Bitcoin protocol is neither attack-payoff secure nor
strongly attack-payoff secure with respect to D-respecting environments.

Proof. The proof is straightforward and follows from a general observation: assume there is just a single
transaction in the network which has been received only by a corrupted party pi. Then, the adversary does
not publish this transaction to the network. If he does not, then he will be the one claiming the reward
with probability one, which is his best choice. Hence, he does not follow the protocol (as the semi-honest
front-running adversary would do) and hence it cannot be strongly attack-payoff secure.

Furthermore, the protocol is also not attack-payoff secure. If the honest-majority assumption does not
hold, and thus an adversary can fork the ledger state, he would exercise his power to create a ledger state
where it is a corrupted party who mines the block containing the only transaction in the system as this will
yield better reward than simply mining on empty blocks. ut

Fallback security. Note that because cryptographic security trivially implies attack-payoff security for all
possible environments and utilies, we can easily derive a fallback security notion: If the majority of miners
mines honestly, then we get attack-payoff security; and even if this fails, we still get attack-payoff security
under the assumption that the distribution of the fees and the relation between rewards vs costs vs conversion
rate are as in Theorem 5 or 6.
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Appendix

A More Background on the RPD Framework and the Bitcoin Ledger

In this section we introduce some notation and review the basic concepts and definitions from the literature,
in particular from [10] and [1] that that are needed for evaluating our results.

We start by reviewing giving mode details on the concepts and definitions of the RPD framework [10],
which allows to capture the design of optimally secure protocols against incentive-driven (aka “rational”)
attackers. In more detail, the RPD framework builds upon simulation-based security in the sense of the UC
framework [5]. Recall that in this framework, one typically proves that a given multi-party protocol (such
as Bitcoin) securely realizes a certain ideal functionality (e.g., the “ledger” functionality). Next, we briefly
recap the recent result in [1], where a universally composable treatment of the Bitcoin protocol is presented,
and which will be the basis for our RPD treatment.

A.1 More Details on the RPD Framework

In [10], Garay et al. capture incentive-driven adversaries by casting attacks as a meta-game between two
rational players, the protocol designer D and the attacker A, which we now describe.

The attack game GM. The game is parameterized by a (multi-party) functionality F known to both
agents D and A which corresponds to the ideal goal the designer is trying to achieve (and the attacker to
break.) Looking ahead, when we analyze Bitcoin, F will be a ledger functionality (cf. [1]). The designer D
chooses a protocol for realizing the functionality F from the set of all probabilistic and polynomial-time
(PPT) computable protocols, where a protocol consists of the code that the (honest) parties are supposed
to execute. D sends to A the description Π ⊆ {0, 1}∗ of this protocol.33 Upon receiving Π, A chooses a PPT
interactive Turing machine (ITM) A to attack protocol Π. The set Z of possible terminal histories is then
the set of sequences of pairs (Π,A), where Π is an n-party protocol, and A is an adversarial strategy for
attacking Π in a traditional cryptographic definition.

Consistently with [10], we denote the corresponding attack game by GM, where M is referred to as the
attack model, which specifies all the public parameters of the game, namely: (1) the functionality, (2) the
description of the relevant action sets, and (3) the utilities assigned to certain actions (see below.)

For defining stability, RPD uses the standard solution concept for extensive games with perfect informa-
tion, namely, subgame-perfect equilibrium, where, informally, the actions of each party at any point in the
game (i.e., after any history) form a best response to this history (cf. [25, Definition 97.2]: Nash-equilibrium of
a Stackelberg game). However, as we are interested in cryptographic security definitions with negligible error
terms, this notion is refined to ε-subgame perfect equilibrium, which considers as solutions all profiles in which
the parties’ utilities are ε-close to their best-response utilities (see [10] for a formal definition.) Throughout
this paper we will only consider ε = negl(κ); in slight abuse of notation, we will refer to negl(κ)-subgame
perfect equilibrium simply as subgame perfect.

The utilities. The core novelty of the RPD framework is in how utilities are defined. Since the underlying
game is zero-sum, it suffices to define the attacker’s utility. This utility depends on the goals of the attacker,
more precisely, the security breaches which he succeeds to provoke. As a first attempt, one might try to
identify such breaches in the protocol transcript and assign payoffs to them. However, as noted in [10],
certain security breaches, such as learning noticeable information on the honest parties’ inputs, cannot be
decided by looking at the protocol’s transcript alone. To solve this issue, [10] uses the simulation paradigm
for assigning a utility to the attacker. Intuitively, the idea is to map attacks to the protocol onto attacks in
the ideal world and reward the attacker when this mapping yields a payoff. In more detail, the attacker’s
utility is defined via the following three-step process:
33 Note that this description includes also the protocol’s hybrids.
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1. The first step is to modify the ideal functionality F to obtain a (possibly weaker) ideal functionality
〈F〉, which explicitly allows the attacks we wish to model. For example, 〈F〉 could give its simulator
access to the parties’ inputs. (This allows to score attacks that aim at input-privacy breaches.)

2. The second step induces a scoring mechanism for the different breaches that are of interest to the ad-
versary. Specifically, it defines a function vA mapping the joint view of the relaxed functionality 〈F〉 and
the environment Z to a real-valued payoff. Given this mapping one can then define the random variable
(ensemble) v〈F〉,S,ZA as the result of applying vA to the views of 〈F〉 and Z in a random experiment
describing an ideal evaluation with ideal-world adversary S. In other words, v〈F〉,S,ZA describes (as a
random variable ensemble) the payoff of S in an execution using directly the functionality 〈F〉.34 The
attacker’s (ideal) expected payoff for simulator S and environment Z is defined to be the expected value
of vA

〈F〉,S,Z , i.e.,
U
〈F〉
IA (S,Z) = E(v〈F〉,S,ZA ).

The triple M = (F, 〈F〉, vA) constitutes the attack model.

3. In the third and final step we use the above (ideal) expected payoff to define the real expected payoff of
the attacker—and via that his utility—for a given strategy profile (Π,A): The attacker’s (real) expected
payoff for a strategy profile (Π,A) with respect to environment Z, where Π realizes 〈F〉, is taken to
be the payoff of the “best” simulator for A, that is, the simulator that successfully emulates A while
achieving the minimum score.35

Formally, for a functionality 〈F〉 and a protocol Π, denote by CA the class of simulators that are
“good” for A, i.e, CA = {S ∈ ITM | ∀Z : EXECΠ,A,Z ≈ EXEC〈F〉,S,Z}. The attacker’s real expected
payoff for strategy profile (A,Z) is then defined as

U
Π,〈F〉
RA (A,Z) = inf

S∈CA
{U 〈F〉IA (S,Z)}.

In other words, UΠ,〈F〉RA assigns to each pair (A,Z) ∈ ITM × ITM (and each value of the security pa-
rameter κ) a real number corresponding to the expected payoff obtained by A in attacking Π within
environment Z. 36

Having defined the real expected payoff, UΠ,〈F〉RA (A,Z), the (expected) utility of the attacker for an
adversary-strategy A, is defined as the (maximal) payoff of A, i.e., its expected payoff when executing
the protocol with A’s “preferred” environment, i.e.,

uA(Π,A) = sup
Z∈ITM

{UΠ,〈F〉RA (A,Z)}.

Note that as the views in the above experiments are in fact random variable ensembles indexed by the
security parameter κ, the probabilities of all the relative events are in fact functions of κ, hence the utility
is also a function of κ.

Remark 5 (Event-based utility [10].). In many applications, however, including those in our work, meaningful
payoff functions have the following, simple representation: Let (E1, . . . , E`) denote a vector of (disjoint)
events defined on the views (of S and Z) in the ideal experiment corresponding to the security breaches
that contribute to the attacker’s utility. Each event Ei is assigned a real number γi, and the payoff function
v~γA assigns, to each ideal execution, the sum of γi’s for which Ei occurred. The ideal expected payoff of a
simulator is computed according to our definition as

U
〈F〉
IA (S,Z) =

∑
Ei∈~E,γi∈~γ

γi Pr[Ei],

where the probabilities are taken over the random coins of S, Z, and 〈F〉.
34 Recall that the views in the above experiment are random variable ensembles indexed by the security parameter.
35 Refer to [10] for an explanation of why the minimizing simulator is the right choice.
36 For adversaries A with CA = ∅, the score is ∞ by definition.
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RPD security. Building on the above definition of utility, [10] introduces a natural notion of security
against incentive-driven attackers. Intuitively, a protocol Π is uA-attack-payoff secure in a given attack
model M = (F, ·, vA), if the utility of the best adversary against this protocol is the same as the utility of
the best adversary in attacking the F-hybrid ”dummy” protocol, which only relays messages between F and
the environment.

Definition 6 (Attack-payoff security [10]). LetM = (F, 〈F〉, vA, vD) be an attack model inducing utilities
uA and uD on the attacker and the designer, respectively,37 and let φF be the dummy F-hybrid protocol. A
protocol Π is attack-payoff secure for M if for all adversaries A ∈ ITM,

uA(Π,A) ≤ uA(φF ,A) + negl(κ).

Intuitively, this security definition accurately captures security against an incentive-driven attacker, as in
simulating an attack against the dummy F-hybrid protocol, the simulator never needs to provoke any of the
“breaching” events. Hence, the utility of the best adversary against Π equals the utility of an adversary that
does not provoke any “bad event.”

A.2 More Details on the Ledger Functionality

In [1], Badertscher et al. present a universally composable treatment of the Bitcoin protocol, ΠB, in the
UC framework. Here we give more details on the ideal goal that Bitcoin aims to achieve, namely the ledger
functionality.

The Bitcoin ledger. The ledger functionality GB
ledger maintains a ledger state state, which is a sequence

of state blocks. A state block contains (application-specific) content values—the “transactions.” For each
honest party, the ledger stores a pointer to a state block which defines the local view of that party onto
the ledger state. The functionality ensures that each pointer is not too far away from the head of the state
(and that it only moves forward). The ledger allows any party (whether an honest miner or the adversary)
to submit transactions which are first validated by means of a predicate ValidTxB, and, if considered valid,
are added to the functionality’s buffer (the adversary is informed upon any such action). At any time, the
GB

ledger allows the adversary to propose a candidate state block (by specifying a vector of transactions) it
desires to be appended to the ledger state. However, the adversary has to obey the ledger functionality’s
policy, which is specified by an algorithm ExtendPolicy that checks whether the proposal is compliant with
the policy. If the adversary’s proposal does not comply with the ledger policy, ExtendPolicy will reject the
proposal. The policy enforced by the Bitcoin ledger can be succinctly summarized as follows:

Ledger’s growth. Within a certain number of rounds the number of added blocks must not be too small
or too large. In particular, the adversary cannot wait too long before proposing a new block, otherwise,
the ledger will extend the state on its own.
Chain quality. Each proposed block is associated with a flag that, intuitively, indicates whether it was
mined using the honest mining process. This policy ensures that a certain fraction of the proposed blocks
must be mined this way.
Transaction liveness. If a transaction is old enough and valid, it will be included in a block and added
to the ledger state. In particular, the adversary cannot delay valid transaction for an arbitrary number
of rounds.

We provide a more formal description of GB
ledger in Appendix A.3. Refer to [1] for additional details.

The Bitcoin ledger is securely realized by the Bitcoin protocol, or, more specifically, by an abstraction of
it called the ledger protocol, which casts it as a synchronous UC protocol as explained in the preliminaries
of this work.
37 In [10], by default uD = −uA as the game is zero-sum.

26



A.3 Formal Description of the Bitcoin Ledger Functionality

This section contains a more formal description of the Bitcoin ledger functionality referred to in the text. In
particular, we also provide the Bitcoin ExtendPolicy. More details on the ledger functionality can be found
in [1].

General: The functionality is parametrized by four algorithms, Validate, ExtendPolicy, Blockify, and predict-time,
along with two parameters: windowSize, Delay ∈ N. The functionality manages variables state, NxtBC, buffer,
τL, and ~τstate, as described above. The variables are initialized as follows: state := ~τstate := NxtBC := ε,
buffer := ∅, τL = 0. For each party pi ∈ P the functionality maintains a pointer pti (initially set to 1) and a
current-state view statei := ε (initially set to empty). The functionality also keeps track of the timed
honest-input sequence in a vector ~IT

H (initially ~IT
H := ε).

Party Management: The functionality maintains the set of registered parties P, the (sub-)set of honest parties
H ⊆ P, and the (sub-set) of de-synchronized honest parties PDS ⊂ H (following the definition of de-synchronized
of [1]). The sets P,H,PDS are all initially set to ∅. When a new honest party is registered, if it is registered with
the clock then it is added to the party sets H and P and the current time of registration is also recorded; if the
current time is τL > 0, it is also added to PDS . Similarly, when a party is deregistered, it is removed from both P
(and therefore also from PDS or H). The ledger maintains the invariant that it is registered (as a functionality) to
the clock whenever H 6= ∅. A party is considered fully registered if it is registered with the ledger and the clock.

Upon receiving any input I from any party or from the adversary, send (clock-read, sidC) to Gclock and
upon receiving response (clock-read, sidC , τ) set τL := τ and do the following:

1. Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have been registered (continuously) since
time τ ′ < τL − Delay (to both ledger and clock). Set PDS := PDS \ P̂. On the other hand, for any
synchronized party p ∈ H \ PDS , if p is not registered to the clock, then PDS ∪ {p}.

2. If I was received from an honest party pi ∈ P:
(a) Set ~IT

H := ~IT
H ||(I, pi, τL);

(b) Compute ~N = ( ~N1, . . . , ~N`) := ExtendPolicy(~IT
H , state, NxtBC, buffer, ~τstate) and if ~N 6= ε set

state := state||Blockify( ~N1)|| . . . ||Blockify( ~N`) and ~τstate := ~τstate||τ `
L, where τ `

L = τL|| . . . , ||τL.
(c) For each BTX ∈ buffer: if Validate(BTX, state, buffer) = 0 then delete BTX from buffer. Also, reset

NxtBC := ε.
(d) If there exists pj ∈ H \ PDS such that |state| − ptj > windowSize or ptj < |statej |, then set

ptk := |state| for all pk ∈ H \ PDS .

3. Depending on the above input I and its sender’s ID, Gledger executes the corresponding code from the
following list:
• Submiting a transaction:

If I = (submit, sid, tx) and is received from a party pi ∈ P or from A (on behalf of a corrupted party pi)
do the following

(a) Choose a unique transaction ID txid and set BTX := (tx, txid, τL, pi)
(b) If Validate(BTX, state, buffer) = 1, then buffer := buffer ∪ {BTX}.
(c) Send (submit, BTX) to A.

• Reading the state:
If I = (read, sid) is received from a fully registered party pi ∈ P then set statei := state|min{pti,|state|}

and return (read, sid, statei) to the requestor. If the requestor is A then send (state, buffer, ~IT
H) to A.

Functionality GB
ledger
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• Maintaining the ledger state:
If I = (maintain-ledger, sid,minerID) is received by an honest party pi ∈ P and (after updating ~IT

H as
above) predict-time(~IT

H) = τ̂ > τL then send (clock-update, sidC) to Gclock. Else send I to A.

• The adversary proposing the next block:
If I = (next-block, hFlag, (txid1, . . . , txid`)) is sent from the adversary, update NxtBC as follows:

(a) Set listOfTxid← ε

(b) For i = 1, . . . , ` do: if there exists BTX := (x, txid,minerID, τL, pi) ∈ buffer with ID txid = txidi then
set listOfTxid := listOfTxid||txidi.

(c) Finally, set NxtBC := NxtBC||(hFlag, listOfTxid) and output (next-block, ok) to A.

• The adversary setting state-slackness:
If I = (set-slack, (pi1 , p̂ti1

), . . . , (pi` , p̂ti`
)), with {pi1 , . . . , pi`} ⊆ H \ PDS is received from the adversary

A do the following:
(a) If for all j ∈ [`] : |state| − p̂tij

≤ windowSize and p̂tij
≥ |stateij |, set pti1

:= p̂ti1
for every j ∈ [`]

and return (set-slack, ok) to A.
(b) Otherwise set ptij

:= |state| for all j ∈ [`].

• The adversary setting the state for desychronized parties:
If I = (desync-state, (pi1 , state′i1 ), . . . , (pi` , state′i`)), with {pi1 , . . . , pi`} ⊆ PDS is received from the
adversary A, set stateij := state′ij for each j ∈ [`] and return (desync-state, ok) to A.

The ExtendPolicy for Bitcoin is given below. The extend policy is parameterized by the ledger parameters
that control the speed and the quality of the ledger.

function ExtendPolicy(~IT
H , state, NxtBC, buffer, ~τstate)

We assume call-by-value and hence the function has no side effects.
This Function implements the Extend Policy of the Bitcoin Ledger.

~Ndf ← DefaultExtension(~IT
H , state, NxtBC, buffer, ~τstate) // Extension if adversary violates policy.

Let τL be current ledger time (computed from ~IT
H)

Parse NxtBC as a vector ((hFlag1, NxtBC1), · · · , (hFlagn, NxtBCn))
~N ← ε // Initialize Result
if |state| ≥ windowSize then // Determine time of block which is windowSize blocks behind the head

Set τlow ← ~τstate[|state| − windowSize + 1]
else

Set τlow ← 0
end if
oldValidTxMissing← false // Flag to keep track whether old enough, valid transactions are inserted.
for each list NxtBCi of transaction IDs do // Compute the next state block and verify validity

~Ni ← ε
Use the txid contained in NxtBCi to determine the list of transactions
Let ~tx = (tx1, . . . , tx|NxtBCi|) denote the transactions of NxtBCi

if tx1 is not a coin-base transaction then
return ~Ndf

else
~Ni ← tx1
for j = 2 to |NxtBCi| do

Set sti ← blockifyB( ~Ni)
if ValidTxB(txj , state||sti) = 0 then

return ~Ndf // Default Extension if adversarial proposal is invalid
end if

Algorithm ExtendPolicy for GB
ledger
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~Ni ← ~Ni||txj

end for
Set sti ← blockifyB( ~Ni)

end if
if the proposal is declared to be an honest block, i.e., hFlagi = 1 then

for each BTX = (tx, txid, τ ′, pi) ∈ buffer of an honest party pi with time τ ′ < τlow − Delay
2 do

if ValidTxB(tx, state||sti) = 1 but tx 6∈ ~Ni then
oldValidTxMissing← true // A transaction is missing in adversarial proposal.

end if
end for

end if
~N ← ~N || ~Ni

state← state||sti

~τstate ← ~τstate||τL

// Determine most recent honestly-generated block in the interval behind the head.
j ← max{{windowSize} ∪ {k | stk ∈ state ∧ proposal of stk had hFlag = 1}}
if |state| − j ≥ η then

return ~Ndf // Adversary proposed too few honestly generated blocks.
end if
if |state| ≥ windowSize then

// Update τlow: the time of the state block which is windowSize blocks behind the head of the
current, possibly extended state

Set τlow ← ~τstate[|state| − windowSize + 1]
else

Set τlow ← 0
end if

end for
if τL − τlow < minTimewindow then // Ensure that ledger does not proceed too fast

return ε
else if τlow > 0 and τL − τlow > maxTimewindow then // A sequence of blocks cannot take too much time.

return ~Ndf

else if τlow = 0 and τL − τlow > 2 · maxTimewindow then // Bootstrapping cannot take too much time.
return ~Ndf

else if oldValidTxMissing then // If not all old enough, valid transactions have been included.
return ~Ndf

end if
return ~N

end function

A.4 The clock

Since the ledger interacts with a clock, we provide here the description of a clock functionality as well.
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function DefaultExtension(~IT
H , state, NxtBC, buffer, ~τstate)

We assume call-by-value and hence the function has no side effects.
The function returns a policy-compliant extension of the ledger state.

Let τL be current ledger time (computed from ~IT
H)

Set ~Ndf ← txcoin-base
minerID of an honest miner

Sort buffer according to time stamps and let ~tx = (tx1, . . . , txn) be the transactions in buffer
Set st← blockifyB( ~Ndf)
repeat

Let ~tx = (tx1, . . . , txn) be the current list of (remaining) transactions
for i = 1 to n do

if ValidTxB(txi, state||st) = 1 then
~Ndf ← ~Ndf||txi

Remove txi from ~tx
Set st← blockifyB( ~Ndf)

end if
end for

until ~Ndf does not increase anymore
if |state|+ 1 ≥ windowSize then // Let τlow be the time of the block which is windowSize− 1 blocks

behind the head of the state.
Set τlow ← ~τstate[|state| − windowSize + 2]

else
Set τlow ← 0

end if
c← 1
while τL − τlow > maxTimewindow do

Set ~Nc ← txcoin-base
minerID of an honest miner

~Ndf ← ~Ndf|| ~Nc

c← c+ 1
if |state|+ c ≥ windowSize then // Update τlow to the time of the state block which is windowSize− c

blocks behind the head.
Set τlow ← ~τstate[|state| − windowSize + c+ 1]

else
Set τlow ← 0

end if
end while
return ~Ndf

end function

Algorithm for Default State Extension

Fig. 1. Function to compute a policiy-compliant default ledger-state extension.
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The functionality manages the set P of registered identities, i.e., parties p = (pid, sid). It also manages the set F
of functionalities (together with their session identifier). Initially, P := ∅ and F := ∅.
For each session sid the clock maintains a variable τsid. For each identity p := (pid, sid) ∈ P it manages variable
dp. For each pair (F, sid) ∈ F it manages variable d(F,sid) (all integer variables are initially 0).

Synchronization:

– Upon receiving (clock-update, sidC) from some party p ∈ P set dp := 1; execute Round-Update and forward
(clock-update, sidC , p) to A.

– Upon receiving (clock-update, sidC) from some functionality F in a session sid such that (F, sid) ∈ F set
d(F,sid) := 1, execute Round-Update and return (clock-update, sidC ,F) to this instance of F.

– Upon receiving (clock-read, sidC) from any participant (including the environment on behalf of a party, the
adversary, or any ideal—shared or local—functionality) return (clock-read, sidC , τsid) to the requestor
(where sid is the sid of the calling instance).

Procedure Round-Update: For each session sid do: If d(F,sid) := 1 for all F ∈ F and dp = 1 for all honest parties
p = (·, sid) ∈ P, then set τsid := τsid + 1 and reset d(F,sid) := 0 and dp := 0 for all parties p = (·, sid) ∈ P.

Functionality Functionality Gclock

Fig. 2. The shared/global clock functionality. We assume lazy creation of variables, i.e., a variable is only created
once it is needed.

B The Weak Bitcoin Ledger

In this section we formally describe the weakened Bitcoin ledger functionality GB
weak-ledger.

General: The functionality is parametrized by four algorithms, Validate, weakExtendPolicy, Blockify, and
predict-time, along with two parameters: windowSize, Delay ∈ N. The functionality manages variables
state-tree, NxtBC, buffer, and τL, where state-tree is a tree of state blocks. The variables are initialized as
follows: state-tree = gen, NxtBC := ε, buffer := ∅, τL = 0. For each party pi ∈ P the functionality maintains a
pointer pti (initially set to the root of state-tree) which defines the current-state view statei of pi. The
functionality also keeps track of the timed honest-input sequence in a vector ~IT

H (initially ~IT
H := ε).

Party Management: The functionality maintains the set of registered parties P, the (sub-)set of honest parties
H ⊆ P, and the (sub-set) of de-synchronized honest parties PDS ⊂ H (following the definition of de-synchronized
of [1]). The sets P,H,PDS are all initially set to ∅. When a new honest party is registered, if it is registered with
the clock then it is added to the party sets H and P and the current time of registration is also recorded; if the
current time is τL > 0, it is also added to PDS . Similarly, when a party is deregistered, it is removed from both P
(and therefore also from PDS or H). The ledger maintains the invariant that it is registered (as a functionality) to
the clock whenever H 6= ∅. A party is considered fully registered if it is registered with the ledger and the clock.

Upon receiving any input I from any party or from the adversary, send (clock-read, sidC) to Gclock and
upon receiving response (clock-read, sidC , τ) set τL := τ and do the following:

1. Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have been registered (continuously) since
time τ ′ < τL − Delay (to both ledger and clock). Set PDS := PDS \ P̂. On the other hand, for any
synchronized party p ∈ H \ PDS , if p is not registered to the clock, then PDS ∪ {p}.

2. If I was received from an honest party pi ∈ P:

Functionality GB
weak-ledger
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(a) Set ~IT
H := ~IT

H ||(I, pi, τL);
(b) Evaluate ~R= (( ~Npt1 , pt1, . . . , ( ~Nptk , ptk)) := weakExtendPolicy(~IT

H , state-tree, NxtBC, buffer)

(c) For each pointer pti such that ~Npti 6= ε add path Blockify( ~Npti,1), . . . ,Blockify( ~Npti,`) to state-tree
starting at node pti.

(d) Reset NxtBC := ε.

3. Depending on the above input I and its sender’s ID, GB
weak-ledger executes the corresponding code from the

following list:
• Submiting a transaction:

If I = (submit, sid, tx) and is received from a party pi ∈ P or from A (on behalf of a corrupted party pi)
do the following

(a) Choose a unique transaction ID txid and set BTX := (tx, txid, τL, pi)
(b) Set buffer := buffer ∪ {BTX} and send (submit, BTX) to A.

• Reading the state:
If I = (read, sid) is received from a fully registered party pi ∈ P return (read, sid, statei) to the
requestor. If the requestor is A then send (state-tree, buffer, ~IT

H) to A.

• Maintaining the ledger state:
If I = (maintain-ledger, sid,minerID) is received by an honest party pi ∈ P and (after updating ~IT

H as
above) predict-time(~IT

H) = τ̂ > τL then send (clock-update, sidC) to Gclock. Else send I to A.

• The adversary proposing the next block:
If I = (next-block, pt,hFlag, (txid1, . . . , txid`)) is sent from the adversary, update NxtBC as follows:

(a) Check that pt points to a leaf of state-tree and set listOfTxid← ε (otherwise, ignore command)
(b) For i = 1, . . . , ` do: if there exists BTX := (x, txid,minerID, τL, pi) ∈ buffer with ID txid = txidi then

set listOfTxid := listOfTxid||txidi.
(c) Finally, set NxtBC[pt] := NxtBC[pt]||(hFlag, listOfTxid) and output (next-block, ok) to A.

• The adversary proposing a fork:
If I = (fork, pt, (txid1, . . . , txid`)) is sent from the adversary, update NxtBC as follows:

(a) Set listOfTxid← ε

(b) For i = 1, . . . , ` do: if there exists BTX := (x, txid,minerID, τL, pi) ∈ buffer with ID txid = txidi then
set listOfTxid := listOfTxid||txidi.

(c) Finally, set NxtBC[pt] := NxtBC[pt]||(0, listOfTxid) and output (fork, ok) to A.

• The adversary setting state-slackness:
If I = (set-pointer, (pi1 , p̂ti1

), . . . , (pi` , p̂ti`
)), with {pi1 , . . . , pi`} ⊆ H \ PDS is received from the

adversary A do the following:
(a) If for all j ∈ [`] : p̂tij

has greater distance than ptij
from the root state-tree, setptij

:= p̂tij
for

every j ∈ [`] and return (set-slack, ok) to A.
(b) Otherwise set ptij

to the leaf with greatest distance from the root of state-tree.

• The adversary setting the state for desychronized parties:
If I = (desync-state, (pi1 , state′i1 ), . . . , (pi` , state′i`)), with {pi1 , . . . , pi`} ⊆ PDS is received from the
adversary A, set stateij := state′ij for each j ∈ [`] and return (desync-state, ok) to A.

In the following we describe the weakened extend policy for GB
weak-ledger.

function weakExtendPolicy(~IT
H , state-tree, NxtBC, buffer)

Let τL be current ledger time (computed from ~IT
H)

Algorithm weakExtendPolicy for GB
weak-ledger
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// The function must not have side-effects: Only modify copies of relevant values.
Create local copies of the values buffer, state-tree, pt and ~τstate.
// First, create a default honest client block as alternative:
Set ptD to the leaf of the longest branch of state-tree and denote by stateD the corresponding state.
Set ~Ndf ← txcoin-base

minerID of an honest miner
Sort buffer according to time stamps.
Let ~tx = (tx1, . . . , tx`) be the transactions in buffer
Set st← blockifyB( ~Ndf)
repeat

Let ~tx = (tx1, . . . , tx`) be the current list of (remaining) transactions
for i = 1 to ` do

if ValidTxB(txi, stateD||st) = 1 then
~Ndf ← ~Ndf||txi

Remove txi from ~tx
Set st← blockifyB( ~Ndf)

end if
end for

until ~Ndf does not increase anymore
// Now, parse the proposed block by the adversary
// Possibly more than one block should be added, possibly at several places
~R← ε // Result variable
for each pt such that NxtBC[pt] 6= ε do

Set state to the state corresponding to pointer pt (i.e., a path in state-tree)
Parse NxtBC[pt] as a vector ((hFlag1, NxtBC1), · · · , (hFlagn, NxtBCn))
~Npt ← ε // Initialize Result
for each list NxtBCi of transaction IDs do

// Compute the next state block
~Ni ← ε
// Verify validity of NxtBCi and compute content
Use the txid contained in NxtBCi to determine the list of transactions
Let ~tx = (tx1, . . . , tx|NxtBCi|) denote the transactions of NxtBCi

if tx1 is not a coin-base transaction then
return ( ~Ndf, ptD)

else
~Ni ← tx1
for j = 2 to |NxtBCi| do

Set sti ← blockifyB( ~Ni)
if ValidTxB(txj , state||sti) = 0 then

return ( ~Ndf, ptD)
end if
~Ni ← ~Ni||txj

end for
Set sti ← blockifyB( ~Ni)

end if
~Npt ← ~N || ~Ni

state← state||sti

~τstate ← ~τstate||τL

end for
~R← ~R||( ~Npt, pt)
Update (the local copy of) state-tree to include the extended path state

end for
return ~R

end function
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B.1 On the secure realization of the weak ledger
It is easy to see that such a weak ledger can be constructed perfectly:
Lemma 4. The weak Bitcoin ledger GB

weak-ledger is UC-realized by ΠB for any fraction of dishonest parties.
In particular, the realization is possible by means of a black-box simulator Sweak.
Proof. First, consider the case where the fraction of dishonest parties is limited as in Theorem 1. In this
case, the protocol ΠB UC-realizes the stronger ledger GB

ledger. Hence, one can directly use the black-box
simulator presented in [1]. If the fraction of dishonest parties is larger the adversary can control which
(valid) blocks will enter the ledger state and can set the speed of the ledger. Observe, weakExtendPolicy does
not (in contrast to ExtendPolicy) restrict the speed, nor the type of blocks entered into the ledger. This allows
to simulate any block pattern which could occur in the real-world using the black-box simulator from the
first case. Moreover, in the second case the adversary can fork the state in the real-world. However, this can
be simulated using the fork command of the GB

weak-ledger. In summary, one arrives at a straightforward
extension, which we denote by Sweak, of the black-box simulator from [1] to simulate the protocol execution
of ΠB for any number of corrupted parties. ut

C The State-Exchange hybrid world of Bitcoin

State Exchange Functionality. A convenient step in showing that the Bitcoin protocol realizes the ledger,
is to observe that it can be modularized: the sub-process that corresponds to the typical mining-process (or
PoW step) realizes a functionality that models a lottery: the lottery decides which miner gets to advance the
state and additionally the process of propagating this state to other miners. In our flat model, this lottery
is captured by the state exchange functionality which allows any party to submit ledger states. Upon each
submission, the functionality accepts the input with certain probability p (and corresponds to the probability
of finding a PoW). Each submission is treated independently. Only accepted states are then multicast to all
parties and considered as possible ledger states.

More formally, the state-exchange functionality F∆,pH ,pAStX allows parties to submit ledger states which are
accepted with a certain probability. Accepted states are then multicast to all parties. FStX keeps track of all
states that it ever saw, and implements the following mechanism upon submission of a new ledger state ~st
and a state block st from any party: If ~st was previously submitted to F∆,pH ,pAStX and ~st||st is a valid state,
then FStX accepts ~st||st with probability pH (resp. pA for dishonest parties); accepted states (by honest
parties) are then sent to all registered parties, subject to a network delay ∆.

Recall from Section 2.2 that the setting in this work is the following flat model: each computing entity
has exactly one trial to extend the state per round and the delay is ∆ = 1 round. Therefore, we use the
instantiation F1,p,p

StX in this work. For simplicity, we do not denote the parameters and simply write FStX. A
detailed description of FStX and its realization can be found in in [1].
Realization. The realization of FStX by employing a proof-of-work protocol (StateExchange-Protocol in
[1]) is achieved without any restrictions, i.e., no restrictions beyond the usual efficiency requirements on the
environment (as standard in UC) are made. In particular, the following statement holds for any number of
corrupted parties and the involved simulation is black-box.
Lemma 5. [1] The protocol StateExchange-Protocol UC-realizes functionality FStX in the (FRO,FN-MC)-
hybrid model.

D Proofs of the Main Statements

D.1 Proof of Lemma 1
Lemma. Given any adversarial strategy, there is a front-running, honest-mining adversary A that achieves
better utility. In particular, the adversarial strategy A makes as many RO-queries per round as allowed by the
real-world restrictions, and one environment that maximizes its utility is the environment Z that activates
A as the first ITM in every round until A halts.
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Proof. To simplify the argument, we make use of Lemma 5 to analyze the Bitcoin protocol in a simpler
hybrid world. This lemma is proven in [1] and depicted in Section C for completeness. The lemma says that
instead of looking at the Bitcoin protocol, where the PoW are solved by queries to a random oracle FRO,
we can equivalently look at a hybrid world where the parties and the adversary interact with a functionality
FStX which implements a lottery and is described in Section C: when submitting some new state to this
functionality, with probability p it is accepted (each query by any party is treated independently). All states
that are accepted by the lottery are by definition valid. Recall that the Bitcoin protocol only considers valid
states as possible ledger states. Hence, a necessary condition for a block to be added to the ledger state
is that the block is a valid state extension, i.e., the new state including the new block is first accepted by
FStX. The modular construction step that realizes the functionality is unconditional (in the random-oracle
model) and fails only with negligible probability in the security parameter κ. Looking at the simulator of
this construction step given in [1] we further observe that it is a black-box simulator and that one query to
the state-exchange functionality corresponds to one query to the random oracle of any real-world-adversary
A. By [10, Theorem 6], this functionality replacement does not affect the payoff except with negligible
probability in κ. For simplicity, we thus still denote this hybrid world by “real world”, in contrast to “ideal
world” which denotes an execution of the environment, the weak ledger functionality GB

weak-ledger and a
simulator.

In the following we first look at the real-world UC-execution, i.e., all random variables are defined as
functions on the transcript of the real UC random experiment, i.e., the execution of a protocol, the adversary,
and the environment. Let Xi be the Bernoulli random variable that equals 1 if the ith query (of the transcript)
to the state-exchange functionality was successful (and 0 otherwise). LetA1 be a front-running, honest-mining
adversary making exactly q∗ queries in total. By the definition of the strategy as in Definition 2, we directly
see that whenever the adversary mines a block, the honest miners’ protocol demands that they continue
mining on the longest chain. Given that the adversary, in some round r, finds at least one block that extends
the longest chain, then A1 always delivers the longest chain to the honest miners immediately. Hence, the
honest miners keep on mining on the adversarial chain in this case and the adversarial blocks will eventually
go into the state of the ledger as defined by the protocol. Hence, for all i with Xi = 1 implies that the
adversary extends the state by one state block. For this adversary, we therefore get the real-world payoff
function defined by

RReal
A1

:= breward · CR ·
q∗∑
i=1

Xi − q∗ · mcost

and hence

E
[
RReal
A1

]
= q∗ · p · breward · CR− q∗ · mcost.

For sake of conciseness, let us define the random variable X =
∑q∗

i=1Xi. Note that the q∗ queries are
distributed among r∗ := q∗

t number of rounds. The best environment Z runs the environment at least r∗
number of rounds until A1 halts, and activates the honest parties until all adversarially mined blocks appear
as part of the ledger state as output by (at least) one honest party.

We now proceed with the proof of the statement. First, consider the case (1−δ)·p·breward·CR−mcost > 0
for some constant 0 < δ < 1. Let A2 denote any adversary making at most q queries to the state-exchange
functionality, i.e., let Q denote the number of queries in an execution of the protocol, the environment Z,
and the adversary A2 and let PQ be the associated distribution, then we define q := max support(PQ). The
expected utility of A2 in this execution is loosely upper bounded by

E
[
RReal
A2

]
≤ q · breward · CR.

The reason is that it is impossible to add more blocks to the ledger state (except with negligible probability).
This holds by definition of FStX: one query can at most extend one state by at most one block. Consequently,
if a black-box simulator S2 for A2 contradicts this observation, then it is trivially distinguishable and hence
S2 6∈ CA2 .

35



For our front-running and semi-honest adversary, we can now set q∗ := q·breward·CR·κ
(1−δ)·p·breward·CR−mcost and the

Chernoff-Bound yields

Pr[RReal
A1

< E
[
RReal
A2

]
] ≤ Pr[RReal

A1
< q · breward · CR] (5)

≤ Pr[X < (1− δ) · q∗ · p] < exp(−δ
2 · q∗ · p

2 ) (6)

which is a negligible function in κ.
Recall that the attacker’s utility is actually defined on the ideal-world transcript, i.e., on the transcript

of an execution of the ideal functionality, the environment, and the simulator S ∈ CA1 that minimizes the
ideal world utility defined as U 〈F〉ID (S,Z) = E(v〈F〉,S,ZA ) on the ideal-world payoff function v, where in our
case 〈F〉 := GB

weak-ledger. However, a general argument shows that our analysis of the real-world is actually
sufficient. First, we have that CA1 6= ∅. To see this, consider our concrete simulator Sweak described in
Lemma 4 in Section B. This simulator is black-box and UC-realizes the weak Bitcoin-ledger. Second, the
number q∗ of queries by A1 is fixed and due to black-box simulation, any simulator S has to answer q∗ number
of queries by the adversary. Third, the expected number of solutions to the proof-of-work cannot deviate by
too much from the expected number in the real world. The reason is that this is observable by the environment
Z. More formally, fix an arbitrary PPT environment Z and let Xideal be the random variable describing the
number of successful returns upon querying the (simulated) state-exchange functionality. Given q submit
queries, the expected number of successes in the real world is q · p. In addition, by a Chernoff-Bound, given
q submit-queries, the probability that more than (1 + ε) · q · p or less than (1− ε) · q · p return with a success
is negligible in the security parameter κ. Assume for the sake of contradiction that

E[Xideal | Qideal = q∗] < (1− ε) · q∗ · p

for some ε > 0. Since the event is observable (it corresponds to the number of state blocks of the ledger
assigned to a corrupted party), we can construct an environment Z ′, which first executes Z (until it halts)
and then outputs 1 if the deviation from the expected value of the real-world is too significant. For this
environment, we would have EXEC

ΠB,A,Z′ 6≈ EXEC
GB

weak-ledger,S,Z′
contradicting our assumption that S1 ∈

CA1 . Thus, to achieve a utility exceeding q ·breward ·CR with overwhelming probability, we directly get from
equation 5 that

Pr[v〈F〉,S1,Z1
A < q · breward · CR] < exp(−δ

′2 · q∗ · p
2 ) = negl(κ), (7)

for an appropriate constant δ′ and a sufficiently large (still polynomial) number of queries q∗. Since for this
choice of parameter, we have that E[v〈F〉,S1,Z1

A ] ≥ q · breward · CR ≥ E[v〈F〉,S2,Z2
A ], we can directly conclude

the following: Let

x∗1 := sup
Z1∈ITM

{ inf
S1∈CA1

{E[v〈F〉,S1,Z1
A ]}}

x∗2 := sup
Z2∈ITM

{ inf
S2∈CA2

{E[v〈F〉,S2,Z2
A ]}}.

Assume for the sake of contradiction that x∗2 > x∗1. In this case, there has to exist a Z2 such that
infS2∈CA2

{E[vS2,Z2
A ]} > inf〈F〉,S1∈CA1

{E[v〈F〉,S1,Z1
A ]} for all PPT environments Z1, which is a contradiction.

Hence, for all adversarial strategies A2, uA(ΠB,A2) ≤ uA(ΠB,A1) + negl(κ), for some A1 ∈ Afr.

Let us now assume that p · breward · CR − mcost ≤ 0. In this case, we will show that any adversary A
has at most utility zero. Hence, the adversary which corrupts no party is guaranteed to be at least as good
as any other strategy. Note that corrupting no party means that the adversary receives no block reward but
incurs no query cost.

36



Let again Q be the random variable denoting the number of queries to the state-exchange functionality
in a UC execution, and let the random variables Xi as defined above. We first rewrite

E
[
RReal
A

]
=

supZ max support(PQ)∑
q=0

Pr[Q = q] · E
[
v | Q = q

]
and observe that

E
[
RReal
A | Q = q

]
= E[B | Q = q] · breward · CR− q · mcost

= breward · CR ·
q∑
i=1

Xi · −q · mcost.

Since the any query in the real world is an independent Bernoulli-trial with success probability p (by the
definition of the state-exchange functionality), we have that the expected value gives

E
[
RReal
A | Q = q

]
= q · (p · breward · CR− mcost) ≤ 0.

This holds for any execution with any environment.
Again, for this case, we need to argue why the analysis of the real world is sufficient. This is easier to

see than the first case by the following observation: the simulator Sweak described in Lemma 4 in Section
B is a valid black-box simulator of any adversary A, hence CA 6= ∅. In particular, its simulation strategy is
to perfectly mimic the real world perfectly, inserting a block into the ledger state whenever needed (since
the ledger is weak, this is always possible by definition). Since this is one particular simulator of CA , it
constitutes an upper bound on the utility of the adversary. Since in addition, the transcript of the real and
the ideal worlds are identically distributed with this simulator (i.e., EXEC

ΠB,A,Z ≡ EXEC
GB

weak-ledger,Sweak,Z
,

the real-world analysis applies to the payoff function defined on the ideal-world transcript. We therefore get
directly that for all adversarial strategies A2, uA(ΠB,A2) ≤ uA(ΠB,A1) + negl(κ), for some A1 ∈ Afr (the
one that does not corrupt any party). ut

D.2 Proof of Theorem 3
Theorem. For n > 0 and breward · CR < mcost

p the Bitcoin protocol is not incentive compatible.
Proof. In the following we look the real-world UC-execution in the state-exchange functionality hybrid-
world. The n > 0 honest parties run the Bitcoin protocol ΠB in presence of an front-running, honest-mining
adversary which corrupts t < n parties. Each party makes one mining query per round. As the adversary is
front-running any adversarial blocks mined in the current round are inserted before the honest parties fetch
for new blocks. In particular, the adversary does not prevent honest parties from mining a block in the same
round. Moreover, at most one honest block per round is added to the state. The probability that an honest
block is added to the state in an arbitrary round is 1− (1−p)n−t. The honest parties thus insert an expected
(1− (1− p)n−t) blocks per round into the state.

Analogously to the proof of Lemma 2, the number of honest blocks inserted into the ledger state in the
ideal world is negligibly close to the number of honest blocks in the real-world ledger state (which is defined
as the prefix of the longest chain). Since the payoff in case of a fork is negative, the designer’s utility (per
round) is upper bounded by

uD(ΠB,A) ≤ (1− (1− p)n−t) · breward · CR− (n− t) · mcost.

If the utility is strictly negative, i.e., uD(ΠB,A) < 0 we have that breward ·CR < n−t
1−(1−p)n−t ·mcost. Consider

the following lower bound
n− t

1− (1− p)n−t · mcost ≥ (n− t) · mcost
1− (1− p · (n− t)) = (n− t) · mcost

p · (n− t) · mcost = mcost
p

.

This implies for breward · CR < mcost
p (and thus uD(ΠB,A) < 0) that it is not profitable for honest parties to

participate in the Bitcoin protocol. ut
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D.3 Proof of Theorem 4

Theorem. Consider the real world consisting of the random oracle functionality FRO, the diffusion network
FN-MC, and the clock Gclock, and letWflat(·) be the wrapper that formalizes the restrictions of the flat model.38

Consider the class �isvalidchainH,d(·) of protocols that are defined for the Wflat(Gclock,FRO,FN-MC)-hybrid world
and which are compatible with the Bitcoin network, i.e., which obey the following two restrictions:

1. With probability 1, the real-world transcript (i.e., the real-world UC-execution of Π, any environment
and adversary) does not contain a chain C with isvalidchainH,d(C) = 0 and this chain was an output to
the network from an uncorrupted protocol instance running Π.

2. Upon input (read, sid) to a protocol instance, the return value is (read, sid, ~st
dT ) (for some integer T ),

where ~st
dT denotes the prefix of the state ~st encoded in the longest valid chain C received by this protocol

instance.

With respect to the class �isvalidchainH,d(·), the Bitcoin protocol is an incentive-compatible choice for the
protocol designer if Bitcoin is profitable as of Lemma 3, i.e., if we are in the region breward · CR > n·mcost

p ,
and if,

breward · CR >
mcost

p · (1− p)n−1 . (8)

Proof. Let us first recall some of the basic properties of our model. First, note that the protocol designer’s
utility decreases super-polynomially if he proposes a protocol which, even when no corruptions occur, fails
to implement one consistent ledger state (i.e., the designer is punished when proposing a solution where
forks could happen with non-negligible probability in T > polylog(κ)), and hence such as solution cannot
be incentive compatible (the loss is greater than what he could ever earn). Second, the model restricts the
number of hash queries per round, which is modeled as a restriction on the number of random-oracle queries.
So, each protocol instance can invoke the random oracle once in a round. Finally, the messages from the
network can be fetched exactly once per round.

We present a sequence of claims and finally conclude the statement.

Claim (A). Without loss of generality, we can assume that Π only sends messages via FN-MC.

Proof: Given a protocol Π, we design another protocol Π ′ as follows: whenever an instance of Π with session
identifier sid sends a message m to some other instance dest, we define m′ ← (Network,m, sid,dest and send
it via FN-MC (where Network is a unique starting sequence of messages). Analogously, upon receiving such
a message, Π ′ processes it as a standard incoming message just as Π would do if the destination address
matches the protocol instance. Since FN-MC is a stronger resource than the insecure network, and since the
adversary is free in delivering a message to anyone of its choice, whatever ideal functionality F is realized
by Π, it is also realized by Π ′ and Π ′ sends all messages via FN-MC. �

Claim (B). Let r > 0 be some round and let Π be a protocol. In the synchronous model for protocol execu-
tion, the output to the network FN-MC in round r of any uncorrupted protocol instance of Π is independent
of the outputs of other uncorrupted protocol instances in round r if the adversarial strategy is front-running
as per Definition 2.

Proof: Recall the definition of a front-running adversarial strategy. In particular, the strategy implies that
the adversary delays any honest message by at least one round. Hence, a message output by an honest party
38 Recall from [1] that we model restrictions by using functionality-wrappers. The above implemented restrictions

correspond to the so-called flat model of Bitcoin, where each party gets one query to the random oracle per round
and can send and receive one vector of messages in each round.
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(i.e., an uncorrupted protocol instance) in round r is received not before the beginning of round r + 1 by
any other honest party. This implies the claim. �

The above claim essentially says that protocol instances cannot coordinate within one round. Note that
throughout the paper, we treat the hash function H as an instance of a random oracle functionality (sampled
at the onset of the execution). The following claim says that if the goal of the protocol is to generate chains C
such that isvalidchainH,d(C) = 1, then, except with negligible probability, a random oracle query can produce
a block whose pointer points to at most one other block, i.e., its predecessor is unique.

Claim (C). Let pi be a protocol instance and let r > 0 and let {Ci = G||Bi,1||Bi,2|| . . . ||Bi,n1} be the set of
all valid chains that have been input to FN-MC in round r. Let B = 〈s, st, n〉 be the value of pi queried to
the random oracle in round r and define the set S(i,r)

B as follows:

S
(i,r)
B := ∅ if H[B] ≥ d,

S
(i,r)
B := {Bi,j | s = H[Bi,j ]} if H[B] < d.

Then, the probability of the event |S(i,r)
B | > 1 is at most negligible in κ.

In addition, except with negligible probability, |S(i,r)
B | does not contain a value that was given as input

to FRO for the first time in round r by another honest party.

Proof: The event |S(i,r)
B | > 1 indicates that party pi successfully found a proof of work, which is simultaneously

valid for more than one chain block. Assuming that no collisions occur among output values of the random
oracle functionality, the pointer s of block B uniquely defines a block Bi,j with s = H[Bi,j ] and thus
|S(i,r)

B | ≤ 1. Thus, the probability of the event |S(i,r)
B | > 1 is upper bounded by the collision probability and

hence is no more than poly(κ)
2κ by the union bound. Finally, by the previous claim, the protocol actions of

party pi cannot depend on outputs of other protocol instances in round r. Hence, |S(i,r)
B | does not contain

any block B′ which was input to FRO for the first time in round r unless s = H[B′]. But this happens only
with negligible probability since from the point of view of pi, the return value H[B′] is independent and
uniformly distributed. �

The above claim formalizes that if two honest users simultaneously find an valid block, then those blocks
cannot be part of the same chain. This will be important in the sequel.

Claim (D). Let r > 0. The protocol Π instructs any party pi to extend the longest chain it receives at the
onset of round r. This can only increase the utility of the protocol designer if Bitcoin the ratio between block
reward and mining cost are as given in the theorem statement.

Proof: Recall that incentive compatibility requires to prove optimality of the Bitcoin protocol against a
front-running adversary. By Definition 2 and Lemma 2 we can assume that (1) the adversary gets activated
at the onset of each round (2) it makes all its queries (sequentially) to the random oracle, (3) it delivers
all its messages in the same round, (4) it delays the honest messages by one round, and (5) it executes the
honest mining protocol.

By properties (1), (2), (3), the honest miners receive the the potentially newly found blocks of the
adversary already in round r, thus, for some block B̂ found by the adversary in round r, B̂ ∈ |S(i,r)

B | is not
excluded. By property (5), the adversary was extending the longest chain known to him from round r − 1.
In addition, the adversary will continue extending the longest chain in round r+ 1 and not consider shorter
ones.

By property (3),(4), and (5), the chain received by the honest parties at the onset of round r is the
longest chain known to any other honest party. In case there are multiple candidates of equal length a tie-
breaking rule decides. The exact rule does not matter here, as long as it leaves the probability of violating
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the common-prefix property negligible39 in the parameter T .40 Let us denote the length of the longest chain
after the adversary has mined in round r by `r.

Now, denote by Shr the set of blocks mined by honest parties in round r and assume for now that Shr 6= ∅.
By Claim C, no two blocks B1,B2 ∈ Shr can be part of the same chain. Therefore, the length of the chain
the front-running adversary is mining on in round r + 1 has length at most `r + 1 and at least `r, except
with negligible probability in κ. Thus, Shr 6= ∅ implies that the block at position `r + 1, belongs to one of the
honest parties.

By the same argument as in the proof of Lemma 2, we arrive at an equivalence between the occurrence
of a successful round of honest parties and the received payoff in the form of one block reward. By Claim C,
this ratio can only be negligibly larger in the ideal world as otherwise, this would immediately be observable
by an environment and would yield a distinguisher distinguishing the real world and the ideal world with an
arbitrary simulator S.

To conclude the statement, it is thus left to argue that it is optimal that each miner issues exactly
one query to the random oracle. While the maximum probability of success is achieved if n − t different
queries are made to the random oracle, we need to argue that this yields an optimal payoff. Let Qhr be the
random variable describing the number of honest queries to the random oracle in round r (i.e., the associated
distribution of Qhr is a distribution on the set {0, . . . , n− t}. We get as expected reward in one round that

n−t∑
q=0

Pr[Qhr = q] · (breward · CR · (1− (1− p)q)− q · mcost)︸ ︷︷ ︸
=:g(q)

.

By a straightforward calculation, we see g(q+1)−g(q) > 0 if breward ·CR > mcost
p·(1−p)q (q ∈ {0, . . . , n− t−1}).

Hence, it is optimal for the protocol designer to choose that P [Qhr = n− t] = 1 as long as

breward · CR >
mcost

p · (1− p)n−t−1 .

The largest lower bound is achieved at t = 0 given in the theorem statement. Note that the probability
p · (1 − p)n−t−1 is the probability that a fixed honest miner, e.g., the last one activated in a round, is
successful and all the other honest miners are not. �

In summary, we proved in a previous section that the Bitcoin protocol is attack-payoff secure, and in
this section, we prove that the Bitcoin protocol is actually the best choice given the above condition on the
value of a block reward in contrast to the mining costs. It thus holds that within this profitable region, the
Bitcoin protocol is in addition incentive compatible, i.e., it constitutes an equilibrium. We hence established

∀Π ∈ �isvalidchainH,d(·) : uD(Π,Afr) ≤ uD(ΠB,Afr) + negl(κ) and

∀A : uA(ΠB,A) ≤ uA(ΠB,Afr) + negl(κ) for someAfr ∈ Afr,

as required by the definition of incentive-compatibility. This concludes the proof. ut

D.4 Proof of Lemma 2

Lemma. If breward · CR > n·mcost
p then the Bitcoin protocol yields, with overwhelming probability, a positive

utility for the protocol designer in the presence of front-running adversaries, i.e., the Bitcoin protocol is
profitable in such a setting.
39 Recall that for standard Bitcoin we need to choose T > polylog(κ) to make this probability negligible in κ.
40 For standard Bitcoin, the selection rule is first come, first served and giving preference to the local longest chain

of a party. Against a passive adversary the probability of creating a length-T fork using this rule is negligible in
T , as it would require at least two honest miners to be simultaneously successful for an extended period of rounds
(without the adversary being successful). We also observe that employing a strategy that yields a unique result,
such as taking the lexicographically smallest chain among the candidates, would give probability 0 of creating a
fork. This supports an observation made in [12] on the dependency of the Bitcoin network stability on a particular
chain selection rule.
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Proof. In the following we look the real-world UC-execution in the state-exchange functionality hybrid-world.
Honest parties run the Bitcoin protocol ΠB in the presence of a front-running, honest-mining adversary
which corrupts t < n parties. Each party makes one mining query per round, as otherwise, the synchronous
computation does not proceed (and we consider all environments that maximize the A’s utility and hence
the computation has to proceed). Regarding the designer’s utility, which is measured in the ideal-world, the
best simulator41 for him will yield the same distribution in payoffs and thus uD(ΠB,A) = 1 − (1 − p)n−t) ·
breward · CR− (n− t) · mcost and uD(ΠB,A) > 0 we get for the interval

breward · CR >
n− t

1− (1− p)n−t · mcost.

The right hand side can be upper bounded as follows:
n− t

1− (1− p)n−t · mcost ≤ n · mcost
1− (1− p)n−t ≤

n · mcost
1− (1− p) = n · mcost

p

Hence, for breward · CR > n·mcost
p that it gives positive utility to run the Bitcoin protocol. ut

D.5 Proof of Theorem 5

Theorem. Consider arbitrary environments and let the sum of the transaction fees per block be bounded by
maxblock > 0. Then, the Bitcoin protocol is strongly attack-payoff secure in the attack model M̂B. It is further
incentive compatible with respect to the class of protocols that are compatible with the Bitcoin network under
the same conditions as in Theorem 4), i.e., if

breward · CR >
mcost

p · (1− p)n−1 .

Proof. The proof is a direct consequence of Theorem 2 and Theorem 4. First, the best environment for the
attacker is the one that always submits transactions that allow the adversary to create state blocks st such
that f̂(st) = maxblock, which is constant and we can invoke Theorem 2 to conclude strong attack-payoff
security. For the second part of the statement, it is easy to see that the best strategy for the protocol designer
to let a protocol always mine blocks with the maximum number of total fees possible (i.e., available to the
honest parties). By Theorem 4, this is incentive compatible as soon as the guaranteed reward is at least

mcost
p·(1−p)n−1 and Bitcoin mining is profitable (as in Theorem 4). Since breward is the minimum reward per
block that can be guaranteed, the statement follows analogous to Theorem 4 . ut

D.6 Proof of Theorem 6

Theorem. Consider distributions D with the following property: in every round, D outputs a vector of
transactions such that any party gets as input a list of transactions to build a valid next state block st to
extend the longest chain and such that f̂(st) = maxblock holds (where maxblock > 0). Then, with respect
to D-respecting environments, the Bitcoin protocol is strongly attack-payoff secure in the attack model M̂B.
It is further incentive compatible with respect to the class of protocols that are compatible with the Bitcoin
network (as defined in Theorem 4) if

maxblock · CR >
mcost

p · (1− p)n−1 .

Proof. The statement directly follows along the lines of the proof of Theorem 5 by observing that we can give
an exact guaranteed block reward. Thus, we can again invoke Theorem 2 and Theorem 4 (with breward :=
maxblock). Note that both theorems hold w.r.t. arbitrary environments, and hence also hold for the above
type of environment (which is a subset of all environments). ut

41 Note that the best simulator is no worse than the simulator Sweak described in Lemma 4 in Section B which is a
black-box simulator of any adversary A that mimics the real world perfectly.
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