523 research outputs found
A Novel Microwave Sensor to Detect Specific Biomarkers in Human Cerebrospinal Fluid and Their Relationship to Cellular Ischemia During Thoracoabdominal Aortic Aneurysm Repair
Thoraco-abdominal aneurysms (TAAA) represents a particularly lethal vascular disease that without surgical repair carries a dismal prognosis. However, there is an inherent risk from
surgical repair of spinal cord ischaemia that can result in paraplegia. One method of reducing
this risk is cerebrospinal fluid (CSF) drainage. We believe that the CSF contains clinically
significant biomarkers that can indicate impending spinal cord ischaemia. This work
therefore presents a novel measurement method for proteins, namely albumin, as a precursor
to further work in this area. The work uses an interdigitated electrode (IDE) sensor and
shows that it is capable of detecting various concentrations of albumin (from 0 to 100 g/L)
with a high degree of repeatability at 200 MHz (R2 = 0.991) and 4 GHz (R2 = 0.975)
Overview of biologically digested leachate treatment using adsorption
Biological process is effective in treating most biodegradable organic matter present in leachate; however, a significant amount of ammonia, metals and refractory organic compounds may still remain in this biologically digested leachate. This effluent cannot be released to receiving bodies until the discharge limit is met. Several physical/chemical processes have been practiced as post-treatment to remove the remaining pollutants including coagulation–flocculation, oxidation and adsorption. Adsorption is often applied in leachate treatment as it enhances removal of refractory organic compounds. This chapter will focus on works related to adsorption as one of the commonly used methods to treat biologically digested leachate further down to acceptable discharge limit
Overview of biologically digested leachate treatment using adsorption
Biological process is effective in treating most biodegradable organic matter present in leachate; however, a significant amount of ammonia, metals and refractory organic compounds may still remain in this biologically digested leachate. This effluent cannot be released to receiving bodies until the discharge limit is met. Several physical/chemical processes have been practiced as post-treatment to remove the remaining pollutants including coagulation–flocculation, oxidation and adsorption. Adsorption is often applied in leachate treatment as it enhances removal of refractory organic compounds. This chapter will focus on works related to adsorption as one of the commonly used methods to treat biologically digested leachate further down to acceptable discharge limit
Broadband luminescence in defect-engineered electrochemically produced porous Si/ZnO nanostructures
The fabrication, by an all electrochemical process, of porous Si/ZnO nanostructures with engineered structural defects, leading to strong and broadband deep level emission from ZnO, is presented. Such nanostructures are fabricated by a combination of metal-assisted chemical etching of Si and direct current electrodeposition of ZnO. It makes the whole fabrication process low-cost, compatible with Complementary Metal-Oxide Semiconductor technology, scalable and easily industrialised. The photoluminescence spectra of the porous Si/ZnO nanostructures reveal a correlation between the lineshape, as well as the strength of the emission, with the morphology of the underlying porous Si, that control the induced defects in the ZnO. Appropriate fabrication conditions of the porous Si lead to exceptionally bright Gaussian-type emission that covers almost the entire visible spectrum, indicating that porous Si/ZnO nanostructures could be a cornerstone material towards white-light-emitting devices
Experimental and computational study of trace element distribution between orthopyroxene and anhydrous silicate melts: substitution mechanisms and the effect of iron
Although orthopyroxene (Opx) is present during a wide range of magmatic differentiation processes in the terrestrial and lunar mantle, its effect on melt trace element contents is not well quantified. We present results of a combined experimental and computational study of trace element partitioning between Opx and anhydrous silicate melts. Experiments were performed in air at atmospheric pressure and temperatures ranging from 1,326 to 1,420°C in the system CaO-MgO-A
DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains
List of genes down-regulated in both W6nk2 and Zhenong8 after 15Â days exposure to 5Â ÎźM Cd. (DOC 130 kb
A Community-Based Heart Health Intervention: Culture-Centered Study of Low-Income Malays and Heart Health Practices
This paper reports the formative research findings of a culture-centered heart health intervention with Malay community members belonging to low-income households. The community-based culture-centered intervention entailed working in the grassroots with community stakeholders to tailor a heart health campaign with and for low-income Malay Singaporeans. Community stakeholders designed and developed the heart health communicative infrastructures during six focus group sessions detailed in the results. The intervention included building smoking cessation information accessible to the community, the curation of heart healthy Malay centric recipes, and developing culturally responsive information infrastructures to understand a myocardial infarction. The intervention sought to bridge the gap for the community where there is an absence of culturally-centered communicative infrastructures on heart health.fals
Evaluation of next-generation sequencing software in mapping and assembly
Next-generation high-throughput DNA sequencing technologies have advanced progressively in sequence-based genomic research and novel biological applications with the promise of sequencing DNA at unprecedented speed. These new non-Sanger-based technologies feature several advantages when compared with traditional sequencing methods in terms of higher sequencing speed, lower per run cost and higher accuracy. However, reads from next-generation sequencing (NGS) platforms, such as 454/Roche, ABI/SOLiD and Illumina/Solexa, are usually short, thereby restricting the applications of NGS platforms in genome assembly and annotation. We presented an overview of the challenges that these novel technologies meet and particularly illustrated various bioinformatics attempts on mapping and assembly for problem solving. We then compared the performance of several programs in these two fields, and further provided advices on selecting suitable tools for specific biological applications.published_or_final_versio
The genome landscape of indigenous African cattle
Background: The history of African indigenous cattle and their adaptation to environmental and human selection pressure is at the root of their remarkable diversity. Characterization of this diversity is an essential step towards understanding the genomic basis of productivity and adaptation to survival under African farming systems.
Results: We analyze patterns of African cattle genetic variation by sequencing 48 genomes from five indigenous populations and comparing them to the genomes of 53 commercial taurine breeds. We find the highest genetic diversity among African zebu and sanga cattle. Our search for genomic regions under selection reveals signatures of selection for environmental adaptive traits. In particular, we identify signatures of selection including genes and/ or pathways controlling anemia and feeding behavior in the trypanotolerant N’Dama, coat color and horn development in Ankole, and heat tolerance and tick resistance across African cattle especially in zebu breeds.
Conclusions: Our findings unravel at the genome-wide level, the unique adaptive diversity of African cattle while emphasizing the opportunities for sustainable improvement of livestock productivity on the continent
Humeral biepicondylar fracture dislocation in a child: A case report and review of the literature
- …
