70 research outputs found

    ±Genetic structure of the oak wilt vector beetle Platypus quercivorus: inferences toward the process of damaged area expansion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ambrosia beetle, <it>Platypus quercivorus</it>, is the vector of oak wilt, one of the most serious forest diseases in Japan. Population genetics approaches have made great progress toward studying the population dynamics of pests, especially for estimating dispersal. Knowledge of the genetic structuring of the beetle populations should reveal their population history. Using five highly polymorphic microsatellite loci, 605 individuals from 14 sampling sites were assessed to infer the ongoing gene flow among populations as well as the processes of expansion of damaged areas.</p> <p>Results</p> <p>Population differentiation (<it>F</it><sub>ST </sub>= 0.047, <it>G'</it><sub>ST </sub>= 0.167) was moderate and two major clusters were detected by several methods, dividing the samples into north-eastern and south-western populations, a similar genetic divergence was reported in host oak trees. Within the north-eastern populations, the subgroups mostly corresponded to differences in the collection period. The genetic characteristics of the population might have changed after 2 years due to the mixing of individuals between populations with enhanced migration related to population outbreaks. Because isolation by distance was detected for whole populations and also within the north-eastern populations, migration was considered to be limited between neighbouring populations, and most populations were suggested to be in genetic equilibrium of genetic drift and gene flow. Recent bottlenecks were found in some populations with no geographical bias; however, they were all from newly emerged oak wilt forests. The emergence of oak wilt should have induced intense fluctuations in the beetle population size.</p> <p>Conclusions</p> <p>Because the genetic boundaries coincide, we suggest that the geographical structuring of the beetle was formed by co-evolution with the host species. Our findings indicate the oak wilt expansion process.</p

    Are Analogue or Digital Clocks Friendlier for People Living with Dementia?

    Get PDF
    Background: In ageing population, it is desirable to reduce the impact of cognitive decline on daily life. While various types of dementia-friendly environments have been proposed, the question still remains regarding whether analogue or digital clocks are friendlier for people with dementia. Methods: In clinical practice, we normally use our original clock reading test (10 analogue and 10 digital clocks) to assess patients’ ability to read a clock. In the present study, a retrospective medical record survey was conducted. Fifty-five participants who had done the test were identified. The result of the test was compared between analogue and digital clocks. Additionally, to assess specific ability to read analogue clocks, an “analogue-digital gap” was defined as the difference between patients’ performance for analogue and digital clocks. Univariate and multivariate analyses were conducted to detect significant factors associated with reading ability specific to analogue clocks. Results: The analogue clock proved less readable than the digital clock, even after adjusting for MMSE total score (p = 0.003). Multivariate analysis revealed reading ability of the analogue clock was significantly associated with MMSE calculation and clock drawing test (p = 0.009 and 0.040, respectively). Conclusions: In the present study, the digital clock was friendlier than the analogue clock for patients with dementia. Compared to the digital clock, reading analogue clocks might require more widespread cognition, such as working memory and visuospatial processing. While our finding was a general tendency, and individual assessment is necessary, it might help the development of personalized environmental adjustments

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    A natural variant of bovine dopamine β-monooxygenase with phenylalanine as residue 208: purification and characterization of the variant homo- and heterotetramers of (F208)4 and (F208)2(L208)2

    Get PDF
    AbstractBovine dopamine β-monooxygenase was purified from each of 18 individual adrenal glands by the method we have developed for the rapid purification of the enzyme from a single adrenal gland. Differential peptide mapping of the 18 enzyme preparations following fluorescence labeling of their cysteine residues revealed the presence of a novel variant with Phe as residue 208 in 14 adrenal glands; seven of them were homozygous for the variant allele and the remaining seven heterozygous. The variant enzyme was a tetramer and exhibited kinetic and structural properties similar to those of the wild-type tetramer (L208)4. These results indicate an allelic polymorphism and codominant expression of the two alleles of the enzyme gene
    corecore