85 research outputs found

    Dynamics of modulationally unstable ionacoustic wave packets in plasmas with negative ions

    Get PDF
    In this paper we study the propagation of nonlinear ion-acoustic waves in plasmas with negative ions. The Gardner equation governing these waves in plasmas with the negative ion concentration close to critical is derived. The weakly nonlinear theory of modulational instability based on the use of the nonlinear Schrödinger equation is discussed. The investigation of the nonlinear dynamics of modulationally unstable quasi-harmonic wavepackets is carried out by the numerical solution of the Gardner equation. The results are compared with the predictions of the weakly nonlinear theory

    Phase mixing of Alfvén waves propagating in non-reflective magnetic plasma configurations

    Get PDF
    The ability of phase mixing to provide efficient damping of Alfvén waves even in weakly dissipative plasmas made it a popular mechanism for explaining the solar coronal heating. Initially it was studied in the equilibrium configurations with the straight magnetic field lines and the Alfvén speed only varying in the direction perpendicular to the magnetic field. Later the analysis of the Alfvén wave phase mixing was extended in various directions. In particular it was studied in two-dimensional planar magnetic plasma equilibria. Analytical investigation was carried out under the assumption that the wavelength is much smaller than the characteristic scale of the background quantity variation. This assumption enabled using the Wentzel, Kramers, and Brillouin (WKB) method. When it is not satisfied the study was only carried out numerically. In general, even the wave propagation in a one-dimensional inhomogeneous equilibrium can be only studied numerically. However there is one important exception, so-called non-reflective equilibria. In these equilibria the wave equation with the variable phase speed reduces to the Klein-Gordon equation with constant coefficients. In this paper we apply the theory of non-reflective wave propagation to studying the Alfvén wave phase mixing in two-dimensional planar magnetic plasma equilibria. Using curvilinear coordinates we reduce the equation describing the Alfvén wave phase mixing to the equation that becomes a one-dimensional wave equation in the absence of dissipation. This equation is further reduced to the equation which is the one-dimensional Klein-Gordon equation in the absence of dissipation. Then we show that this equation has constant coefficients when a particular relation between the plasma density and magnetic field magnitude is satisfied. Using the derived Klein-Gordon-type equation we study the phase mixing in various non-reflective equilibria. We emphasise that our analysis is valid even when the wavelength is comparable with the characteristic scale of the background quantity variation. In particular, we study the Alfvén wave damping due to phase mixing in an equilibrium with constant plasma density and exponentially divergent magnetic field lines. We confirm the result previously obtained in the WKB approximation that there is enhanced Alfvén wave damping in this equilibrium with the damping length proportional to ln(Re), where Re is the Reynolds number. Our theoretical results are applied to heating of coronal plumes. We show that, in spite of enhanced damping, Alfvén waves with periods of the order of one minute can be efficiently damped in the lower corona, at the height about 200 Mm, only if the shear viscosity is increased by about 6 orders of magnitude in comparison with its value given by the classical plasma theory. We believe that such increase of the shear viscosity can be provided by the turbulence

    Nonlinear effects in resonant layers in solar and space plasmas

    Full text link
    The present paper reviews recent advances in the theory of nonlinear driven magnetohydrodynamic (MHD) waves in slow and Alfven resonant layers. Simple estimations show that in the vicinity of resonant positions the amplitude of variables can grow over the threshold where linear descriptions are valid. Using the method of matched asymptotic expansions, governing equations of dynamics inside the dissipative layer and jump conditions across the dissipative layers are derived. These relations are essential when studying the efficiency of resonant absorption. Nonlinearity in dissipative layers can generate new effects, such as mean flows, which can have serious implications on the stability and efficiency of the resonance

    Transverse oscillations of coronal loops

    Get PDF
    On 14 July 1998 TRACE observed transverse oscillations of a coronal loop generated by an external disturbance most probably caused by a solar flare. These oscillations were interpreted as standing fast kink waves in a magnetic flux tube. Firstly, in this review we embark on the discussion of the theory of waves and oscillations in a homogeneous straight magnetic cylinder with the particular emphasis on fast kink waves. Next, we consider the effects of stratification, loop expansion, loop curvature, non-circular cross-section, loop shape and magnetic twist. An important property of observed transverse coronal loop oscillations is their fast damping. We briefly review the different mechanisms suggested for explaining the rapid damping phenomenon. After that we concentrate on damping due to resonant absorption. We describe the latest analytical results obtained with the use of thin transition layer approximation, and then compare these results with numerical findings obtained for arbitrary density variation inside the flux tube. Very often collective oscillations of an array of coronal magnetic loops are observed. It is natural to start studying this phenomenon from the system of two coronal loops. We describe very recent analytical and numerical results of studying collective oscillations of two parallel homogeneous coronal loops. The implication of the theoretical results for coronal seismology is briefly discussed. We describe the estimates of magnetic field magnitude obtained from the observed fundamental frequency of oscillations, and the estimates of the coronal scale height obtained using the simultaneous observations of the fundamental frequency and the frequency of the first overtone of kink oscillations. In the last part of the review we summarise the most outstanding and acute problems in the theory of the coronal loop transverse oscillations

    Damping of prominence longitudinal oscillations due to mass accretion

    Get PDF
    We study the damping of longitudinal oscillations of a prominence thread caused by the mass accretion. We suggested a simple model describing this phenomenon. In this model we considered a thin curved magnetic tube filled with the plasma. The prominence thread is in the central part of the tube and it consists of dense cold plasma. The parts of the tube at the two sides of the thread are filled with hot rarefied plasma. We assume that there are flows of rarefied plasma toward the thread caused by the plasma evaporation at the magnetic tube footpoints. Our main assumption is that the hot plasma is instantaneously accommodated by the thread when it arrives at the thread, and its temperature and density become equal to those of the thread. Then we derive the system of ordinary differential equations describing the thread dynamics. We solve this system of ordinary differential equations in two particular cases. In the first case we assume that the magnetic tube is composed of an arc of a circle with two straight lines attached to its ends such that the whole curve is smooth. A very important property of this model is that the equations describing the thread oscillations are linear for any oscillation amplitude. We obtain the analytical solution of the governing equations. Then we obtain the analytical expressions for the oscillation damping time and periods. We find that the damping time is inversely proportional to the accretion rate. The oscillation periods increase with time. We conclude that the oscillations can damp in a few periods if the inclination angle is sufficiently small, not larger that 10°, and the flow speed is sufficiently large, not less that 30 km s-1. In the second model we consider the tube with the shape of an arc of a circle. The thread oscillates with the pendulum frequency dependent exclusively on the radius of curvature of the arc. The damping depends on the mass accretion rate and the initial mass of the threads, that is the mass of the thread at the moment when it is perturbed. First we consider small amplitude oscillations and use the linear description. Then we consider nonlinear oscillations and assume that the damping is slow, meaning that the damping time is much larger that the characteristic oscillation time. The thread oscillations are described by the solution of the nonlinear pendulum problem with slowly varying amplitude. The nonlinearity reduces the damping time, however this reduction is small. Again the damping time is inversely proportional to the accretion rate. We also obtain that the oscillation periods decrease with time. However even for the largest initial oscillation amplitude considered in our article the period reduction does not exceed 20%. We conclude that the mass accretion can damp the motion of the threads rapidly. Thus, this mechanism can explain the observed strong damping of large-amplitude longitudinal oscillations. In addition, the damping time can be used to determine the mass accretion rate and indirectly the coronal heating

    A randomized, double-blind, placebo-controlled trial to assess safety and tolerability during treatment of type 2 diabetes with usual diabetes therapy and either Cycloset™ or placebo

    Get PDF
    Background: Cycloset™ is a quick-release formulation of bromocriptine mesylate, a dopamine agonist, which in animal models of insulin resistance and type 2 diabetes acts centrally to reduce resistance to insulin- mediated suppression of hepatic glucose output and tissue glucose disposal. In such animals, bromocriptine also reduces hepatic triglyceride synthesis and free fatty acid mobilization, manifesting decreases in both plasma triglycerides and free fatty acids. In clinical trials, morning administration of Cycloset™ either as monotherapy or adjunctive therapy to sulfonylurea or insulin reduces HbA1c levels relative to placebo by 0.55–1.2. Cycloset™ therapy also reduces plasma triglycerides and free fatty acid by approximately 25% and 20%, respectively, among those also receiving sulfonylurea therapies. The effects of once-daily morning Cycloset™ therapy on glycemic control and plasma lipids are demonstrable throughout the diurnal portion of the day (7 a.m. to 7 p.m.) across postprandial time points. Methods/Design: 3,095 individuals were randomized in a 2:1 ratio into a one year trial aimed to assess the safety and efficacy of Cycloset™ compared to placebo among individuals receiving a variety of treatments for type 2 diabetes. Eligibility criteria for this randomized placebo controlled trial included: age 30–80, HbA1c ≤ 10%, diabetes therapeutic regimen consisting of diet or no more than two hypoglycemic agents or insulin with or without one additional oral agent (usual diabetes therapy; UDT). The primary safety endpoint will test the hypothesis that the rate of all-cause serious adverse events after one year of usual diabetes therapy (UDT) plus Cycloset™ is not greater than that for UDT plus placebo by more than an acceptable margin defined as a hazard ratio of 1.5 with a secondary endpoint analysis of the difference in the rate of serious cardiovascular events, (myocardial infarction, stroke, coronary revascularization or hospitalization for or angina or congestive heart failure). Efficacy analyses will evaluate effects of Cycloset™ versus placebo on change from baseline in HbA1c, fasting glucose, body weight, waist circumference, blood pressure and plasma lipids. Discussion: This study will extend the current data on Cycloset™ safety, tolerability and efficacy in individuals with type 2 diabetes to include its effects in combination with thiazolodinediones, insulin secretagogues, metformin, alpha-glucosidase inhibitors and exogenous insulin regimens. Trial registration: clinical trials.gov NCT0037767

    Simplified Models for LHC New Physics Searches

    Get PDF
    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the "Topologies for Early LHC Searches" workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first ~50-500 pb-1 of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.Comment: 40 pages, 2 figures. This document is the official summary of results from "Topologies for Early LHC Searches" workshop (SLAC, September 2010). Supplementary material can be found at http://lhcnewphysics.or

    1/f2 Characteristics and Isotropy in the Fourier Power Spectra of Visual Art, Cartoons, Comics, Mangas, and Different Categories of Photographs

    Get PDF
    Art images and natural scenes have in common that their radially averaged (1D) Fourier spectral power falls according to a power-law with increasing spatial frequency (1/f2 characteristics), which implies that the power spectra have scale-invariant properties. In the present study, we show that other categories of man-made images, cartoons and graphic novels (comics and mangas), have similar properties. Further on, we extend our investigations to 2D power spectra. In order to determine whether the Fourier power spectra of man-made images differed from those of other categories of images (photographs of natural scenes, objects, faces and plants and scientific illustrations), we analyzed their 2D power spectra by principal component analysis. Results indicated that the first fifteen principal components allowed a partial separation of the different image categories. The differences between the image categories were studied in more detail by analyzing whether the mean power and the slope of the power gradients from low to high spatial frequencies varied across orientations in the power spectra. Mean power was generally higher in cardinal orientations both in real-world photographs and artworks, with no systematic difference between the two types of images. However, the slope of the power gradients showed a lower degree of mean variability across spectral orientations (i.e., more isotropy) in art images, cartoons and graphic novels than in photographs of comparable subject matters. Taken together, these results indicate that art images, cartoons and graphic novels possess relatively uniform 1/f2 characteristics across all orientations. In conclusion, the man-made stimuli studied, which were presumably produced to evoke pleasant and/or enjoyable visual perception in human observers, form a subset of all images and share statistical properties in their Fourier power spectra. Whether these properties are necessary or sufficient to induce aesthetic perception remains to be investigated

    The Cosmic Evolution of AGN in galaxy clusters

    Full text link
    We present the surface density of luminous active galactic nuclei (AGN) associated with a uniformly selected galaxy cluster sample identified in the 8.5 square degree Bootes field of the NOAO Deep Wide-Field Survey. The clusters are distributed over a large range of redshift (0 < z < 1.5) and we identify AGN using three different selection criteria: mid-IR color, radio luminosity, and X-ray luminosity. Relative to the field, we note a clear overdensity of the number of AGN within 0.5 Mpc of the cluster centers at z > 0.5. The amplitude of this AGN overdensity increases with redshift. Although there are significant differences between the AGN populations probed by each selection technique, the rise in cluster AGN surface density generally increases more steeply than that of field quasars. In particular, X-ray selected AGN are at least three times more prevalent in clusters at 1 < z < 1.5 compared to clusters at 0.5 < z < 1. This effect is stronger than can be explained by the evolving median richness of our cluster sample. We thus confirm the existence of a Butcher-Oemler type effect for AGN in galaxy clusters, with the number of AGN in clusters increasing with redshift.Comment: 9 pages, 2 figures, accepted for publication in Ap

    A MISSING-LINK IN THE SUPERNOVA-GRB CONNECTION: THE CASE OF SN 2012ap

    Get PDF
    Gamma Ray Bursts (GRBs) are characterized by ultra-relativistic outflows, while supernovae are generally characterized by non-relativistic ejecta. GRB afterglows decelerate rapidly usually within days, because their low-mass ejecta rapidly sweep up a comparatively larger mass of circumstellar material. However supernovae, with heavy ejecta, can be in nearly free expansion for centuries. Supernovae were thought to have non-relativistic outflows except for few relativistic ones accompanied by GRBs. This clear division was blurred by SN 2009bb, the first supernova with a relativistic outflow without an observed GRB. Yet the ejecta from SN 2009bb was baryon loaded, and in nearly-free expansion for a year, unlike GRBs. We report the first supernova discovered without a GRB, but with rapidly decelerating mildly relativistic ejecta, SN 2012ap. We discovered a bright and rapidly evolving radio counterpart driven by the circumstellar interaction of the relativistic ejecta. However, we did not find any coincident GRB with an isotropic fluence of more than a sixth of the fluence from GRB 980425. This shows for the first time that central engines in type Ic supernovae, even without an observed GRB, can produce both relativistic and rapidly decelerating outflows like GRBs.Comment: 8 pages, 5 figures, 1 table, accepted for publication in Ap
    • …
    corecore