138 research outputs found
Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli
Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins. Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets
COVID-19 and stem cell transplantation; results from an EBMT and GETH multicenter prospective survey
This study reports on 382 COVID-19 patients having undergone allogeneic (n = 236) or autologous (n = 146) hematopoietic cell transplantation (HCT) reported to the European Society for Blood and Marrow Transplantation (EBMT) or to the Spanish Group of Hematopoietic Stem Cell Transplantation (GETH). The median age was 54.1 years (1.0-80.3) for allogeneic, and 60.6 years (7.7-81.6) for autologous HCT patients. The median time from HCT to COVID-19 was 15.8 months (0.2-292.7) in allogeneic and 24.6 months (-0.9 to 350.3) in autologous recipients. 83.5% developed lower respiratory tract disease and 22.5% were admitted to an ICU. Overall survival at 6 weeks from diagnosis was 77.9% and 72.1% in allogeneic and autologous recipients, respectively. Children had a survival of 93.4%. In multivariate analysis, older age (p = 0.02), need for ICU (p < 0.0001) and moderate/high immunodeficiency index (p = 0.04) increased the risk while better performance status (p = 0.001) decreased the risk for mortality. Other factors such as underlying diagnosis, time from HCT, GVHD, or ongoing immunosuppression did not significantly impact overall survival. We conclude that HCT patients are at high risk of developing LRTD, require admission to ICU, and have increased mortality in COVID-19
COVID-19 and stem cell transplantation; results from an EBMT and GETH multicenter prospective survey
© The Author(s) 2021.This study reports on 382 COVID-19 patients having undergone allogeneic (n = 236) or autologous (n = 146) hematopoietic cell transplantation (HCT) reported to the European Society for Blood and Marrow Transplantation (EBMT) or to the Spanish Group of Hematopoietic Stem Cell Transplantation (GETH). The median age was 54.1 years (1.0–80.3) for allogeneic, and 60.6 years (7.7–81.6) for autologous HCT patients. The median time from HCT to COVID-19 was 15.8 months (0.2–292.7) in allogeneic and 24.6 months (−0.9 to 350.3) in autologous recipients. 83.5% developed lower respiratory tract disease and 22.5% were admitted to an ICU. Overall survival at 6 weeks from diagnosis was 77.9% and 72.1% in allogeneic and autologous recipients, respectively. Children had a survival of 93.4%. In multivariate analysis, older age (p = 0.02), need for ICU (p < 0.0001) and moderate/high immunodeficiency index (p = 0.04) increased the risk while better performance status (p = 0.001) decreased the risk for mortality. Other factors such as underlying diagnosis, time from HCT, GVHD, or ongoing immunosuppression did not significantly impact overall survival. We conclude that HCT patients are at high risk of developing LRTD, require admission to ICU, and have increased mortality in COVID-19.JA acknowledges the support of the UK NIHR Imperial College Biomedical Research Centre
The Genotype of the Donor for the (GT)n Polymorphism in the Promoter/Enhancer of FOXP3 Is Associated with the Development of Severe Acute GVHD but Does Not Affect the GVL Effect after Myeloablative HLA-Identical Allogeneic Stem Cell Transplantation
The FOXP3 gene encodes for a protein (Foxp3) involved in the development and functional activity of regulatory T cells (CD4+/CD25+/Foxp3+), which exert regulatory and suppressive roles over the immune system. After allogeneic stem cell transplantation, regulatory T cells are known to mitigate graft versus host disease while probably maintaining a graft versus leukemia effect. Short alleles (≤(GT)15) for the (GT)n polymorphism in the promoter/enhancer of FOXP3 are associated with a higher expression of FOXP3, and hypothetically with an increase of regulatory T cell activity. This polymorphism has been related to the development of auto- or alloimmune conditions including type 1 diabetes or graft rejection in renal transplant recipients. However, its impact in the allo-transplant setting has not been analyzed. In the present study, which includes 252 myeloablative HLA-identical allo-transplants, multivariate analysis revealed a lower incidence of grade III-IV acute graft versus host disease (GVHD) in patients transplanted from donors harboring short alleles (OR = 0.26, CI 0.08-0.82, p = 0.021); without affecting chronic GVHD or graft versus leukemia effect, since cumulative incidence of relapse, event free survival and overall survival rates are similar in both groups of patients
Innate immune responses and antioxidant/oxidant imbalance are major determinants of human Chagas disease.
We investigated the pathological and diagnostic role of selected markers of inflammation, oxidant/antioxidant status, and cellular injury in human Chagas disease. METHODS: Seropositive/chagasic subjects characterized as clinically-symptomatic or clinically-asymptomatic (n = 116), seronegative/cardiac subjects (n = 102), and seronegative/healthy subjects (n = 45) were analyzed for peripheral blood biomarkers. RESULTS: Seropositive/chagasic subjects exhibited an increase in sera or plasma levels of myeloperoxidase (MPO, 2.8-fold), advanced oxidation protein products (AOPP, 56%), nitrite (5.7-fold), lipid peroxides (LPO, 12-17-fold) and malondialdehyde (MDA, 4-6-fold); and a decline in superoxide dismutase (SOD, 52%) and glutathione (GSH, 75%) contents. Correlation analysis identified a significant (p0.95). The MPO (r = 0.664) and LPO (r = 0.841) levels were also correlated with clinical disease state in chagasic subjects (p<0.001). Seronegative/cardiac subjects exhibited up to 77% decline in SOD, 3-5-fold increase in LPO and glutamate pyruvate transaminase (GPT) levels, and statistically insignificant change in MPO, AOPP, MDA, GPX, GSH, and creatine kinase (CK) levels. CONCLUSIONS: The interlinked effects of innate immune responses and antioxidant/oxidant imbalance are major determinants of human Chagas disease. The MPO, LPO and nitrite are excellent biomarkers for diagnosing seropositive/chagasic subjects, and MPO and LPO levels have potential utility in identifying clinical severity of Chagas diseaseFil: Dhiman, Monisha. University Of Texas Medical Branch. Department Of Microbiology & Immunology And Pathology; United State of America;Fil: Coronado, Yun A.. University Of Texas Medical Branch. Department Of Microbiology & Immunology And Pathology; United State of America;Fil: Vallejo, Cecilia K.. University Of Texas Medical Branch. Department Of Microbiology & Immunology And Pathology; United State of America;Fil: Petersen, John R.. University of Texas Medical Branch. Department of Pathology; United States of America;Fil: Ejilemele, Adetoum. University of Texas Medical Branch. Department of Pathology; United States of America;Fil: Nuñez, Sonia. Hospital Público de Gestión Descentralizada San Bernardo (HPGDSA); Argentina;Fil: Zago, María Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Salta. Instituto de Patologia Experimental; Argentina;Fil: Spratt, Heidi. Departments of Biochemistry and Molecular Biology and Preventive Medicine and Community Health. University of Texas Medical Branch; United States of America;Fil: Garg, Nisha Jain. University of Texas Medical Branch. Department of Pathology; United States of America
Development of a Mesoamerican intra-genepool genetic map for quantitative trait loci detection in a drought tolerant × susceptible common bean (Phaseolus vulgaris L.) cross
Drought is a major constraint to common bean (Phaseolus vulgaris L.) production, especially in developing countries where irrigation for the crop is infrequent. The Mesoamerican genepool is the most widely grown subdivision of common beans that include small red, small cream and black seeded varieties. The objective of this study was to develop a reliable genetic map for a Mesoamerican × Mesoamerican drought tolerant × susceptible cross and to use this map to analyze the inheritance of yield traits under drought and fully irrigated conditions over 3 years of experiments. The source of drought tolerance used in the cross was the cream-seeded advanced line BAT477 crossed with the small red variety DOR364 and the population was made up of recombinant inbred lines in the F5 generation. Quantitative trait loci were detected by composite interval mapping for the traits of overall seed yield, yield per day, 100 seed weight, days to flowering and days to maturity for each field environment consisting of two treatments (irrigated and rainfed) and lattice design experiments with three repetitions for a total of six environments. The genetic map based on amplified fragment length polymorphism and random amplified polymorphic DNA markers was anchored with 60 simple sequence repeat (SSR) markers and had a total map length of 1,087.5 cM across 11 linkage groups covering the whole common bean genome with saturation of one marker every 5.9 cM. Gaps for the genetic map existed on linkage groups b03, b09 and b11 but overall there were only nine gaps larger than 15 cM. All traits were inherited quantitatively, with the greatest number for seed weight followed by yield per day, yield per se, days to flowering and days to maturity. The relevance of these results for breeding common beans is discussed in particular in the light of crop improvement for drought tolerance in the Mesoamerican genepool
Synergistic Reversal of Intrahepatic HCV-Specific CD8 T Cell Exhaustion by Combined PD-1/CTLA-4 Blockade
Viral persistence is associated with hierarchical antiviral CD8 T cell exhaustion with increased programmed death-1 (PD-1) expression. In HCV persistence, HCV-specific CD8 T cells from the liver (the site of viral replication) display increased PD-1 expression and a profound functional impairment that is not reversed by PD-1 blockade alone. Here, we report that the inhibitory receptor cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is preferentially upregulated in PD-1+ T cells from the liver but not blood of chronically HCV-infected patients. PD-1/CTLA-4 co-expression in intrahepatic T cells was associated with a profound HCV-specific effector dysfunction that was synergistically reversed by combined PD-1/CTLA-4 blockade in vitro, but not by blocking PD-1 or CTLA-4 alone. A similar effect was observed in circulating HCV-specific CD8 T cells with increased PD-1/CTLA-4 co-expression during acute hepatitis C. The functional response to combined blockade was directly associated with CTLA-4 expression, lost with CD28-depletion and CD4-independent (including CD4+FoxP3+ Tregs). We conclude that PD-1 and CTLA-4 pathways both contribute to virus-specific T cell exhaustion at the site of viral replication by a redundant mechanism that requires combined PD-1/CTLA-4 blockade to reverse. These findings provide new insights into the mechanisms of virus-specific T cell dysfunction, and suggest that the synergistic effect by combined inhibitory receptor blockade might have a therapeutic application against chronic viral infection in vivo, provided that it does not induce autoimmunity
Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus
<p>Abstract</p> <p>Background</p> <p>Domestication and breeding involve the selection of particular phenotypes, limiting the genomic diversity of the population and creating a bottleneck. These effects can be precisely estimated when the location of domestication is established. Few analyses have focused on understanding the genetic consequences of domestication and breeding in fruit trees. In this study, we aimed to analyse genetic structure and changes in the diversity in sweet cherry <it>Prunus avium </it>L.</p> <p>Results</p> <p>Three subgroups were detected in sweet cherry, with one group of landraces genetically very close to the analysed wild cherry population. A limited number of SSR markers displayed deviations from the frequencies expected under neutrality. After the removal of these markers from the analysis, a very limited bottleneck was detected between wild cherries and sweet cherry landraces, with a much more pronounced bottleneck between sweet cherry landraces and modern sweet cherry varieties. The loss of diversity between wild cherries and sweet cherry landraces at the <it>S</it>-locus was more significant than that for microsatellites. Particularly high levels of differentiation were observed for some <it>S</it>-alleles.</p> <p>Conclusions</p> <p>Several domestication events may have happened in sweet cherry or/and intense gene flow from local wild cherry was probably maintained along the evolutionary history of the species. A marked bottleneck due to breeding was detected, with all markers, in the modern sweet cherry gene pool. The microsatellites did not detect the bottleneck due to domestication in the analysed sample. The vegetative propagation specific to some fruit trees may account for the differences in diversity observed at the <it>S</it>-locus. Our study provides insights into domestication events of cherry, however, requires confirmation on a larger sampling scheme for both sweet cherry landraces and wild cherry.</p
On the chronological structure of the solutrean in Southern Iberia
The Solutrean techno-complex has gained particular significance over time for representing a clear demographic and techno-typological deviation from the developments occurred during the course of the Upper Paleolithic in Western Europe. Some of Solutrean's most relevant features are the diversity and techno-typological characteristics of the lithic armatures. These have been recurrently used as pivotal elements in numerous Solutrean-related debates, including the chronological organization of the techno-complex across Iberia and Southwestern France. In Southern Iberia, patterns of presence and/or absence of specific point types in stratified sequences tend to validate the classical ordering of the techno-complex into Lower, Middle and Upper phases, although some evidence, namely radiocarbon determinations, have not always been corroborative. Here we present the first comprehensive analysis of the currently available radiocarbon data for the Solutrean in Southern Iberia. We use a Bayesian statistical approach from 13 stratified sequences to compare the duration, and the start and end moments of each classic Solutrean phase across sites. We conclude that, based on the current data, the traditional organization of the Solutrean cannot be unquestionably confirmed for Southern Iberia, calling into doubt the status of the classically defined type-fossils as precise temporal markers.Fundacao para a Ciencia e Tecnologia [PTDC/HAH/64184/2006, PTDC/HIS-ARQ/117540/2010, SFRH/BD/65527/2009, SFRH/BPD/96277/2013]; National Geographic Society [8045-06]; Wenner-Gren Foundation for Anthropological Research [8290
- …