33 research outputs found

    Hyperglycemic conditions modulate connective tissue reorganization by human vascular smooth muscle cells through stimulation of hyaluronan synthesis.

    Get PDF
    Changes in the extracellular matrix organization within vascular walls are critical events in the process of atherosclerosis including diabetic macroangiopathy. Here, we examined whether glucose can directly modulate connective tissue reorganization by human vascular smooth muscle cells (VSMCs). Using a collagen gel contraction (CGC) assay, we demonstrated that in comparison with normal glucose concentration (5 mM), high glucose concentration (25 mM) inhibits the efficacy of VSMCs to contract collagen gels. With human genome microarrays, we showed a significant increase in the expression of hyaluronan synthase 2 (HAS2) by VSMCs in hyperglycemic conditions. The finding was verified with quantitative real-time polymerase chain reaction, which also revealed that the expression of the other hyaluronan synthesizing enzymes, HAS1 and HAS3, was stimulated concomitantly. A corresponding increase was observed in hyaluronan (HA) production. Treatment of VSMCs either with hyaluronidase or with 4-methylumbelliferone, an inhibitor of HA synthesis, partially restored the diminished CGC efficacy of VSMCs in hyperglycemic conditions. In conclusion, high glucose concentration stimulated HA synthesis by VSMCs and modulated their ability to reorganize collagen-rich matrix. Because HA is known to enhance the development of atherosclerosis and restenosis after percutaneous coronary interventions, our study provides a new potential mechanism whereby hyperglycemia leads to disturbed vascular remodeling in diabetic patients through stimulation of HA synthesis

    Single-Molecule Unbinding Forces between the Polysaccharide Hyaluronan and Its Binding Proteins

    Get PDF
    The extracellular polysaccharide hyaluronan (HA) is ubiquitous in all vertebrate tissues, where its various functions are encoded in the supramolecular complexes and matrices that it forms with HA-binding proteins (hyaladherins). In tissues, these supramolecular architectures are frequently subjected to mechanical stress, yet how this affects the intermolecular bonding is largely unknown. Here, we used a recently developed single-molecule force spectroscopy platform to analyze and compare the mechanical strength of bonds between HA and a panel of hyaladherins from the Link module superfamily, namely the complex of the proteoglycan aggrecan and cartilage link protein, the proteoglycan versican, the inflammation-associated protein TSG-6, the HA receptor for endocytosis (stabilin-2/HARE), and the HA receptor CD44. We find that the resistance to tensile stress for these hyaladherins correlates with the size of the HA-binding domain. The lowest mean rupture forces are observed for members of the type A subgroup (i.e., with the shortest HA-binding domains; TSG-6 and HARE). In contrast, the mechanical stability of the bond formed by aggrecan in complex with cartilage link protein (two members of the type C subgroup, i.e., with the longest HA-binding domains) and HA is equal or even superior to the high affinity streptavidin⋅biotin bond. Implications for the molecular mechanism of unbinding of HA⋅hyaladherin bonds under force are discussed, which underpin the mechanical properties of HA⋅hyaladherin complexes and HA-rich extracellular matrices

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Computational Biology Methods and Their Application to the Comparative Genomics of Endocellular Symbiotic Bacteria of Insects

    Get PDF
    Comparative genomics has become a real tantalizing challenge in the postgenomic era. This fact has been mostly magnified by the plethora of new genomes becoming available in a daily bases. The overwhelming list of new genomes to compare has pushed the field of bioinformatics and computational biology forward toward the design and development of methods capable of identifying patterns in a sea of swamping data noise. Despite many advances made in such endeavor, the ever-lasting annoying exceptions to the general patterns remain to pose difficulties in generalizing methods for comparative genomics. In this review, we discuss the different tools devised to undertake the challenge of comparative genomics and some of the exceptions that compromise the generality of such methods. We focus on endosymbiotic bacteria of insects because of their genomic dynamics peculiarities when compared to free-living organisms

    Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44

    No full text
    Adhesive interactions involving CD44, the cell surface receptor for hyaluronan, underlie fundamental processes such as inflammatory leukocyte homing and tumor metastasis. Regulation of such events is critical and appears to be effected by changes in CD44 N-glycosylation that switch the receptor "on" or "off" under appropriate circumstances. How altered glycosylation influences binding of hyaluronan to the lectin-like Link module in CD44 is unclear, although evidence suggests additional flanking sequences peculiar to CD44 may be involved. Here we show using X-ray crystallography and NMR spectroscopy that these sequences form a lobular extension to the Link module, creating an enlarged HA binding domain and a formerly unidentified protein fold. Moreover, the disposition of key N-glycosylation sites reveals how specific sugar chains could alter both the affinity and avidity of CD44 HA binding. Our results provide the necessary structural framework for understanding the diverse functions of CD44 and developing novel therapeutic strategies
    corecore