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ABSTRACT The extracellular polysaccharide hyaluronan (HA) is ubiquitous in all vertebrate tissues, where its various
functions are encoded in the supramolecular complexes and matrices that it forms with HA-binding proteins (hyaladherins).
In tissues, these supramolecular architectures are frequently subjected to mechanical stress, yet how this affects the intermo-
lecular bonding is largely unknown. Here, we used a recently developed single-molecule force spectroscopy platform to analyze
and compare the mechanical strength of bonds between HA and a panel of hyaladherins from the Link module superfamily,
namely the complex of the proteoglycan aggrecan and cartilage link protein, the proteoglycan versican, the inflammation-asso-
ciated protein TSG-6, the HA receptor for endocytosis (stabilin-2/HARE), and the HA receptor CD44. We find that the resistance
to tensile stress for these hyaladherins correlates with the size of the HA-binding domain. The lowest mean rupture forces are
observed for members of the type A subgroup (i.e., with the shortest HA-binding domains; TSG-6 and HARE). In contrast, the
mechanical stability of the bond formed by aggrecan in complex with cartilage link protein (two members of the type C subgroup,
i.e., with the longest HA-binding domains) and HA is equal or even superior to the high affinity streptavidin-biotin bond. Impli-
cations for the molecular mechanism of unbinding of HA -hyaladherin bonds under force are discussed, which underpin the me-

chanical properties of HA-hyaladherin complexes and HA-rich extracellular matrices.

INTRODUCTION

Hyaluronan (HA) is an abundant and vital element of the
extracellular matrix in all vertebrates. It is a linear polymer
with typical molecular weights on the order of 1 MDa, cor-
responding to contour lengths of several micrometers, and
composed of repeated disaccharide units of glucuronic
acid and N-acetylglucosamine, which are linked by alter-
nating ($-1,4 and $-1,3 glycosidic bonds. Despite having a
regular structure—much simpler than the other (heteroge-
neously sulfated) members of the glycosaminoglycan fam-
ily, such as heparan sulfate, chondroitin sulfate, and
keratan sulfate—HA has a central role in regulating various
pathological and physiological processes, such as inflamma-
tion, immune response, embryogenesis, tumor development,
osteoarthritis, and atherosclerosis (1—4). The diverse biolog-
ical functions of HA arise from its interactions with a wide
range of proteins in the extracellular matrix and on the cell
surface, collectively known as hyaladherins.
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Hyaladherins bind to the flexible and large HA chains and
promote their self-assembly into hydrogel-like multimolec-
ular complexes that frequently undergo further dynamic re-
modeling (1,5). HA -protein interactions have a structural
role in the extracellular space and thus are subjected to me-
chanical forces when matrices or tissues are deformed. For
example, large supramolecular complexes made from HA
and aggrecan, a proteoglycan with a molecular structure
akin to that of a bottle brush, make a vital contribution to
the integrity and biomechanical properties of cartilage that
are crucial for joint function (6-8). In this scenario, the
Gl domain on the N-terminus of aggrecan binds to HA,
where this interaction is stabilized by cartilage link protein
(LP), which simultaneously binds HA and aggrecan. Simi-
larly, complexes of HA with versican, another proteoglycan
with a bottle-brush-like structure, contribute to the elasticity
of blood vessel walls, and mechanical strain has indeed been
observed to modulate versican expression and organization
by vascular smooth muscle cells (9). In these and other con-
texts, the protein tumor necrosis factor-stimulated gene 6
(TSG-6) is thought to promote the dynamic remodeling of
HA-rich matrices under inflammatory conditions, e.g., by
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cross-linking HA (1,10). Mechanical forces also play an
important role in the engagement of HA with cell surface re-
ceptors. For example, interactions of HA with the receptor
CD44 have been implicated in the recruitment of immune
cells (11,12), stem cells, and cancer cells (13,14) from the
blood circulation, where the HA «CD44 bonds formed be-
tween the luminal blood vessel walls and the circulating
cell experience the shear stress of the blood flow. Moreover,
the cellular uptake of HA via endocytosis is also likely to
expose the bonds between HA and its receptors (such as
the HA receptor for endocytosis, HARE, also called stabi-
lin-2 (15)) to mechanical stress because of the packing con-
straints that are associated with the large size and flexibility
of HA.

The above examples illustrate the functional relevance of
HA -hyaladherin bond nanomechanics in various physiolog-
ical and pathological contexts. However, only little is known
about the resistance of HA -hyaladherin interactions to me-
chanical stress at the molecular level; some data are avail-
able for HA-CD44 (16-18), but the nanomechanical
properties of bonds between HA and other hyaladherins
have, to our knowledge, not yet been quantified.

About a dozen hyaladherins are currently known that
belong to the so-called Link module superfamily (19,20)
and selectively bind HA through one or two concatenated
Link modules. Link modules are domains of ~100 amino
acids with structural similarities to the C-type lectin domain
(21,22). Based on the size of the HA-binding domain, the
Link module superfamily has been discriminated into three
subtypes (23). Type A has a single folded Link module (~90
amino acids), and TSG-6 and HARE belong to this subtype.
HA-binding domains of type B are larger (~160 amino
acids) and feature a Link module with extensions at the
N- and C-terminals that are critical for structural and func-
tional activity. CD44 is an example of type B hyaladherins
(24). Type C has the largest HA-binding domains (~200
amino acids), which comprise two contiguous Link mod-
ules; aggrecan (25), versican (26), and LP all belong to
this type.

The size of the HA-binding domain in the Link module
superfamily broadly correlates with the minimal size of
HA that is required for full binding activity. For example,
a heptasaccharide (HA~) is sufficient to fill the HA-binding
site of TSG-6 from type A (22), whereas, a decasaccharide
(HA ) is typically required to reach close-to-maximal affin-
ity for versican from type C (27). For CD44 from type B, an
octasaccharide (HAg) is required for close-to-maximal af-
finity (28). An interesting question is whether the mechani-
cal strength of HA -hyaladherin bonds also correlates with
the size of the HA-binding domain.

In this study, we analyze and compare the nanomechani-
cal properties of a range of HA -hyaladherin complexes that
covers all subtypes of the Link module superfamily and also
includes a ternary HA -hyaladherin complex in addition to
the binary complexes. Specifically, we use atomic force
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microscopy (AFM) based single-molecule force spectros-
copy (SMFS) to quantify the response of individual
molecular interactions to tensile forces. This force probe
technique is now well established for the analysis of intra-
and intermolecular forces (29,30) and is emerging for
the probing of glycosaminoglycan-protein interactions
(16,31,32). A prerequisite of AFM SMFS measurements is
the proper immobilization of the molecules to be probed,
in a way that permits the controlled application of the neces-
sary tensile forces. We have recently reported a versatile
AFM SMFS method to analyze HA -hyaladherin interac-
tions (16). In this approach, we gave particular attention
to the immobilization of HA. HA polymer chains were im-
mobilized via one of their two ends (the so-called reducing
end) to the sharp apex of an AFM tip, and this enabled both
monovalent and multivalent interactions between a single
HA chain and a hyaladherin-coated surface to be probed.
Here, we apply this method and systematically quantify
the resistance of individual HA -hyaladherin molecular in-
teractions to tensile forces as a function of the hyaladherin
type and loading rate.

As model protein constructs for our study (Fig. 1 A), we
used the Link module of TSG-6 (TSG6_LM) and the extra-
cellular domain (ECD) of HARE (HARE_ECD) to repre-
sent type A hyaladherins and the G1 domain of versican
(VG1) to represent type C hyaladherins; we then compared
the results with previously reported data (16) for the ECD of
CD44 as a representative of type B hyaladherins. In addi-
tion, we used the G1 domain of aggrecan (AG1) in complex
with cartilage LP (AG1+LP) to probe the mechanical stabil-
ity of a ternary complex with HA. We show that the me-
chanical stability of individual bonds between HA and
hyaladherins varies moderately but systematically with hy-
aladherin subtype: for any given loading rate, the mean
bond rupture forces are lowest for type A hyaladherins
and highest for type C hyaladherins. Moreover, we find
that ternary AG1-LP-HA complexes are very strong and
exceed the mechanical stability of streptavidin-biotin
bonds.

MATERIALS AND METHODS
Proteins, HA, and buffer

Complexes of aggrecan G1 domain and cartilage LP (AG1+LP) were puri-
fied from bovine articular cartilage and biotinylated by N-hydroxysuccini-
mide-mediated labeling of surface amines, as described previously (33).
Lyophilized AG1+-LP was dissolved in working buffer to make a stock so-
lution at 1 mg/mL protein concentration.

Recombinant human versican G1 domain (VG1) expressed in Escheri-
chia coli, either without tags or biotinylated, were purchased from Anti-
body BCN (Barcelona, Spain) and delivered in phosphate-buffered
saline (PBS) (pH 7.4) with 10% glycerol at a protein concentration of
0.25 mg/mL.

A fusion protein consisting of the human TSG-6 Link module (amino
acids 18-111 of TSG-6; with a mutationally inactivated heparin-binding
domain) at the C-terminal section and the Fc region of human IgGl at
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FIGURE 1 (A) Schematic representations (not to scale) of the protein constructs used and the hyaladherins from which they are derived. Dashed boxes
contain the HA-binding regions that are used in this study. Schematics for aggrecan, versican, TSG-6, and HARE were adapted from (1,26,71,72), respec-
tively. The inset shows a model of an HA octasaccharide (in stick representation) in complex with the TSG-6 Link module (in ribbon representation, with
aminoacids that interact with HA indicated and in stick representation) taken from (22). (B) Schematic representation (not to scale) shows AFM tip func-
tionalization with 2.1 um (840 kDa) long end-biotinylated HA (b-HA). (C) Schematic representations show surface functionalization with hyaladherins, with
the size of all proteins drawn roughly to scale. The TSG-6 link module is expected to be displayed as a dimer because of the dimeric IgG Fc region to which it
is fused. CS, chondroitin sulfate; KS, keratan sulfate; LP, link protein; AG1/2/3, aggrecan G1/2/3 domain; VG1/3, versican G1/3 domain; CUB, CUB mod-
ule; Link, Link module; EGF/EGF-like, epidermal growth factor (like) domains; FAS1, Fasciclin 1 domains; OEG, oligo(ethylene glycol); b-OEG, bio-
tinylated OEG; IgG Fc, Fc domain of IgG; TSG_LM, TSG-6 link module fused to IgG Fc; HARE_ECD, HARE extracellular domain. To see this figure

in color, go online.

the N-terminal section (TSG6_LM) was recombinantly expressed in Chi-
nese hamster ovary S cells and purified as described elsewhere (34) and
was either used as is or biotinylated by N-hydroxysuccinimide-mediated
labeling of surface amines (34). We note that each TSG6_LM is expected
to contain two TSG-6 Link modules because of the formation of disul-
fide-bonded dimers at the Fc region. The concentration of the TSG6_LM
stock solutions was 0.25 mg/mL in PBS.

The ECD of the 190 kDa isoform of the HA receptor for endocytosis
(HARE_ECD) in which the transmembrane and cytosolic domains at the
C-terminus are replaced by a hexahistidine tag was constructed as described
earlier (35). To purify the protein, conditioned medium (250 mL) from
Flp-In HEK293 cells stably expressing the recombinant HARE_ECD was
incubated for 18 h with 1 mL of packed resin conjugated with monoclonal
antibody 30 (15) overnight at 4°C under slow rotation. The mixture was
poured through an empty column (20 mL PolyPrep column; BioRad, Her-
cules, CA) to collect the resin, which was then washed with PBS
(147 mM NaCl, 20 mM Na,HPO, (pH 7.2)), and HARE_ECD was eluted
from the resin with 100 mM glycine (pH 3.0) and immediately neutralized
in excess unbuffered 1.0 M Tris base. The protein was concentrated (Viva-
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spin Turbo 4 with 100 kDa molecular weight cutoff; Sartorius, Bohemia,
NY) and buffer exchanged in PBS at a concentration of 0.3 mg/mL. Purity
of the preparation was assessed by sodium dodecyl sulfate polyacrylamide
gel electrophoresis followed by silver staining the gel, and concentration
was evaluated with the bicinchoninic acid assay.

Lyophilized streptavidin (Sigma Aldrich, St. Louis, MO) was dissolved
in ultrapure water (resistance 18.2 MQ - cm at 25°C; Barnstead Nanopure
Diamond, Thermo Fisher Scientific, Waltham, MA) at 1 mg/mL.

Lyophilized HA polymer with well-defined molecular masses (select
HA) was obtained from Hyalose (Oklahoma City, OK). HA with a biotin
at its reducing end (b-HA) had a molecular mass of 840 = 60 kDa, and un-
modified HA had a molecular mass of either 250 + 12 kDa (for binding
assays) or 58 = 3 kDa (for blocking assays). HA was dissolved and gently
shaken for 2 h in ultrapure water to provide a stock of 1 mg/mL. Stock so-
lutions of all proteins and HA were aliquoted and stored at —20°C. Thawed
aliquots of proteins were used within a few days, and thawed aliquots of HA
were used within a few weeks.

A working buffer consisting of 10 mM HEPES and 150 mM NaCl at pH
7.4 was used to dilute all protein and HA stocks to working concentrations



and for all quartz crystal microbalance with dissipation monitoring
(QCM-D) and SMFS measurements performed throughout this study. For
experiments concerning TSG6_LM, the working buffer was supplemented
with 2 mM CaCl,.

Substrates

QCM-D sensors with gold coating (QSX301; Biolin Scientific, Vistra Frol-
unda, Sweden) were used as received or after recoating with an additional
100 nm gold film. QCM-D sensors with a His-tag-capturing coating
(QSX340; Biolin Scientific) were used as received or after regeneration
with solutions of imidazole in ultrapure water (25 min at 500 mM) and, sub-
sequently, CuSO, in working buffer (15 min at 5 mM). Gold-coated AFM
cantilevers with nominal spring constants of 30 or 6 pN/nm (Biolevers) and
60 pN/nm (NPG-10) were purchased from Bruker AFM Probes (Santa Bar-
bara, CA).

Functionalization of gold surfaces with a biotin-
displaying oligo(ethylene glycol) monolayer

Functional oligo(ethylene glycols) (OEGs) were purchased from Polypure
(Oslo, Norway); one was made of seven ethylene glycol units with a hy-
droxyl group on one end and a thiol on the other (OEG thiol), and the other
contained 10 ethylene glycol units with a biotin on one end and a thiol on
the other (b-OEG thiol). Gold-coated planar substrates or AFM cantilevers
were exposed to ultraviolet/ozone for 30 min and then immersed overnight
at 4°C in an ethanolic solution (purity 99.9%; Scharlab S.L., Barcelona,
Spain) of OEG thiol and b-OEG thiol at a total concentration of 1 mM
and a molar ratio of 99:1. Before use, the functionalized substrates were
rinsed with ethanol and blowdried with N, gas. The biotinylated thiol-
OEG monolayer is inert to the nonspecific binding of proteins but permits
the stable and specific binding of streptavidin via interactions with biotins
(16,36), where this interaction is multivalent with typically two or three bio-
tin-streptavidin bonds per streptavidin molecule (37). It was prepared ex
situ before QCM-D or SMFS measurements on biotin-tagged proteins
and HA.

Anchoring HA to the AFM tip

HA polymers (840 = 60 kDa; contour length 2.10 = 0.15 wm) were
attached to gold-coated AFM cantilevers through a single biotin tag at
the reducing end to a streptavidin monolayer on a biotinylated thiol-OEG
monolayer (Fig. 1 B). Details of the method have recently been reported
(16). Briefly, the cantilevers with a biotinylated thiol-OEG monolayer
were first incubated in a streptavidin solution with incubation conditions
(20 min at 20 ug/mL) leading to the formation of a dense protein monolayer
in which each streptavidin molecule is attached to multiple biotins (37). The
cantilevers were then immersed in a solution of b-HA at conditions (6 min
at 2 pg/mL) that produce a low HA surface coverage. Specifically, we es-
timate a root mean-square distance between anchor points of the AFM
tip to be 76 nm (16,38). Considering the large radius of gyration of the
HA polymer (radius of gyration ~75 nm (39)) and the small radius of the
AFM tip apex (30 nm), it can be expected that only one or at most a few
HA chains can contact the surface simultaneously, thus facilitating the
probing of individual HA <hyaladherin interactions.

QCM-D

QCM-D measures the changes in resonance frequency, Af, and dissipation,
AD, of a sensor crystal upon molecular adsorption on its surface. The
QCM-D response is sensitive to the areal mass density (including
hydrodynamically coupled water) and the mechanical properties of the sur-
face-bound layer. To a first approximation, a decrease in frequency (Af) cor-

SMFS of HA-Hyaladherin Interactions

responds to increased mass, whereas a low (high) response in dissipation
(AD) corresponds to a rigid (soft) film.

QCM-D measurements were carried out with a Q-Sense E4 system
equipped with Flow Modules (Biolin Scientific) with flow rates of
5-20 uL/min at a working temperature of 23°C. Before all experiments,
the walls of chambers and tubings were passivated by exposure to
10 mg/mL bovine serum albumin for 20 min followed by rinsing in ultra-
pure water and blowdrying with N, gas.

Af and AD were collected at six overtones (i = 3, 5,7, 9, 11, and 13).
Changes in dissipation, AD, and normalized frequencies, 4f = Af;/i, for
i = 3 are presented. Any other overtone would have provided similar in-
formation. For the sake of clarity, we subtracted contributions of the sam-
ple solution (because of changes in the viscosity and/or density compared
to working buffer) from the displayed QCM-D responses; this was neces-
sary for the VGI incubation step (Fig. 2 B; offsets were Af = 1.2 =+
0.3 Hz and AD = —0.6 = 0.1 x 107% cf. Fig. S1, B and C) and
the HARE_ECD incubation step (Fig. 2 D; offset was AD = —0.4 =+
0.1 x 107% cf. Fig. SI E). All experiments were carried out in
duplicate; numbers in the text represent the mean * variations around
the mean.

For dense monolayers of globular proteins, the film thickness was esti-
mated from d = —C/p x Af, where the density p = 1.2 g/cm® represents
the protein film density to within an error of less than 20% and
C = 18.1 ng - em™> - Hz™! represents the sensor’s mass sensitivity
constant (40).

SMFS

AFM SMFS experiments were carried out on a NanoWizard II system (JPK,
Berlin, Germany) in working buffer at ambient conditions using gold-
coated cantilevers: OBL with a nominal spring constant of 6 pN/nm and
NPG with a nominal spring constant of 60 pN/nm (both from Bruker
AFM Probes). Cantilever spring constants were determined by the thermal
noise method (41) and found to be within 10% of the nominal values pro-
vided by the manufacturer. Force curves were registered at selected retract
speeds with a maximal applied load of 600 pN and a minimal surface dwell
time (i.e., 0 ms). For a given set of AFM probes, surface and interaction set-
tings between several 100 and a few 1000 force curves were collected
(Table S1). All experiments were performed at least twice with different
yet identically prepared AFM probes and surfaces. Moderate variations in
the noise of force curves across measurements are due to variations in the
AFM probes.

Force curves were analyzed with JPK data processing software. For
quantitative analysis of the stretching of individual HA chains and to
extract bond rupture forces, force-separation curves were fitted with
the worm-like chain (WLC) model (42) with both persistence length
and contour length as adjustable parameters. Only rupture events appear-
ing at tip-sample distances larger than 200 nm were considered for
further analysis to avoid bias by nonspecific tip-sample interactions.
Instantaneous loading rates r were calculated from the effective spring
constant ke, corresponding to the slope of the WLC fit close to the
rupture (Fig. S2 A) and the retract velocity v as r = kegrv. These loading
rates agreed (to within a few percentages) with the expectations accord-
ing to the theoretical expressions for the force-dependent loading rate es-
tablished by Dudko et al. (43). Mean rupture forces were determined
through Gaussian fits on force histograms. Whereas the Bell-Evans
model relies on the analysis of the most likely rupture force (44), we
found the mean rupture force to be a good approximation considering
the SD and shape of the experimental force histograms. OriginPro soft-
ware (OriginLab, Northampton, MA) was employed for nonlinear regres-
sion analysis to extract the effective kinetic parameters (kor and xg) from
the data of mean rupture force versus instantaneous loading rate using the
Bell-Evans model (29,45). In this analysis, the SE of the mean rupture
force was considered to determine the confidence interval for the kinetic
parameters.
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FIGURE 2 QCM-D analysis of hyaladherin immo-
bilization and HA-binding. Frequency shifts, Af, are
shown as lines, and dissipation shifts, AD, are shown
as red lines with open squares. The start and duration
of incubation with different samples are indicated by
arrows on top of the graphs; remaining times repre-
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sent washing steps with working buffer. QCM-D re-
sponses indicate formation of a stable and dense
streptavidin monolayer (on sensors with a biotin-dis-
playing thiol-oligo(ethylene glycol) monolayer on a
gold surface), followed by the formation of stable
monolayers of AGI-LP (4), VGl (B), and
TSG6_LM (C); the QCM-D response in (D) demon-
strates the formation of a stable HARE_ECD mono-

layer (on a sensor with a His-tag-capturing surface).
HA-binding can be observed on all hyaladherins,
although binding is slower and less pronounced in
the case of AG1+LP (A), indicating that the surface
density of active HA-binding sites is low for this hy-
aladherin. To see this figure in color, go online.
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RESULTS

Analysis of hyaladherin immobilization and HA
binding

Before embarking on the analysis of the mechanical prop-
erties of individual HA -hyaladherin interactions, we veri-
fied that all hyaladherins can be immobilized stably and
retain their ability to bind HA when immobilized.
QCM-D was used to monitor the assembly of the protein
films and HA binding; the measurement of two distinct pa-
rameters—the QCM-D sensor’s shifts in resonance fre-
quency Af and dissipation AD—provides simultaneous
and time-resolved information about binding processes
and about the morphology and mechanical properties of
the biomolecular films. The design of the immobilization
strategies is schematically shown in Fig. 1 C. AGI-LP,
VGI1, and TSG6 LM were immobilized via their biotin
tags on dense monolayers of streptavidin formed on gold-
supported biotin-displaying monolayers of thiol-terminated
OEG on gold surfaces. HARE_ECD was immobilized via
its Hisg tag to a His-tag-capturing surface displaying a
Cu”" chelate. The location of the histidine tag at the C-ter-
minus endows HARE_ECD with a well-defined attachment
point equivalent to that of the full-length protein in the cell
membrane. In contrast, biotins on AGI1:LP, VGI1, and
TSG6_LM are likely to be present on multiple surface
amines, and these proteins may therefore attach to the sur-
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face in multiple distinct orientations via one or several
biotins.

The QCM-D responses upon incubation with streptavidin
(20 pg/mL, Fig. 2, A-C) are in good agreement with earlier
studies and indicate the formation of a dense and stable
streptavidin monolayer of ~4 nm thickness that serves as
a “molecular breadboard” (16,36,46) to anchor the desired
biotinylated hyaladherins.

The QCM-D responses upon incubation with AG1-LP
(10 pg/mL) indicate stable immobilization of the protein
in a monolayer of 5 nm thickness (Fig. 2 A). HA polymer
(250 kDa), incubated at 10 ug/mL, bound stably to AG1+-LP
(Fig. 2 A). Control experiments confirmed that AG1-LP
binding to the streptavidin monolayer is largely blocked
when streptavidin is saturated with free biotin before
AGI1-LP exposure and that HA binding is fully specific
for AGI1-LP that is immobilized through biotins
(Fig. S1 A). It is notable though that HA binding is relatively
slow and that the concomitant shifts in frequency (—1.7 =
0.9 Hz) and dissipation (0.5 £ 0.2 x 107) are relatively
small (vide infra). The latter suggests that only a small frac-
tion of the immobilized AG1-LP is active. Presumably, the
random orientation enables binding only to a subset of suit-
ably oriented complexes.

The QCM-D responses for VGI also indicate stable and
specific immobilization of the protein in the form of a
monolayer (Figs. 2 B and S1, B and C). The frequency shift



at equilibrium after incubation with VG1 (5 ug/mL) and
washing in working buffer (4f = —23 £ 1 Hz) corresponds
to a film thickness of ~4 nm, which is consistent with the
size of a protein globule of the molecular mass of VG1
(36.7 kDa). VGI1 without biotin tags did not bind
(Fig. S1 B), confirming the specific binding of VG1 to strep-
tavidin through biotin. HA binding to the VG1 monolayers
was rapid and strong (Af = —5.7 + 0.5 Hz, AD =12 +
0.1 x 107%), confirming the activity of the immobilized
protein.

The QCM-D responses upon exposure of 5 ug/mL of bio-
tinylated TSG6_LM to a streptavidin monolayer again
clearly demonstrate stable binding in the form of a mono-
layer (Fig. 2 C). The shift in frequency of —26 = 1 Hz cor-
responds to an effective film thickness of ~5 nm. This is
smaller than the longest extension of the Fc region (7 nm
(47)) plus the size of the TSG-6 Link module (3 nm (36))
and suggests that the dimeric TSG6_LM molecules would
lie mostly flat on the streptavidin monolayer. However,
HA binding to TSG6_LM was rapid and strong; shifts in fre-
quency and dissipation of —4.6 = 0.7 Hz and 0.9 = 0.1 x
107, respectively, were comparable to those observed for
VGl1, indicating that TSG6_LM retains good HA binding
in the flat orientation. Like for VG1, TSG6_LM lacking
biotin tags did not bind to streptavidin (Fig. S1 D), confirm-
ing specific immobilization through biotin.

Fig. 2 D demonstrates strong and stable binding of
HARE_ECD to the His-tag-capturing surface. The fre-
quency shift for this protein was much larger than for any
of the other studied hyaladherin constructs. After 30 min
of HARE_ECD incubation at 10 ug/mL, Af = —110 =+
4 Hz was attained, equivalent to ~17 nm in film thickness.
That the protein could be completely eluted with imidazole
(Fig. S1 E) indicates specific surface attachment through its
C-terminal Hisg tag. The QCM-D data thus are fully consis-
tent with a binding scenario in which the HA-binding
domain, which is close to the C-terminus in HARE_ECD
(Fig. 1), is located in the vicinity of the surface, whereas
the remaining large multidomain region with the N-termi-
nus is allowed to dynamically flex into the solution phase.
We have here not attempted to drive the HARE_ECD film
formation to saturation, as this process can take a long
time; as the film becomes denser, an entropic barrier is
generated because of the extended shape and flexibility of
HARE_ECD that gradually reduces the protein-binding
rate. HA polymer of 250 kDa incubated at 10 ug/mL bound
stably to immobilized HARE_ECD (Af = —5.4 + 0.1 Hz,
AD = 1.0 = 0.1 x 107%). The initial rate of HA binding to
HARE_ECD and the associated magnitude of the QCM-D
response were similar to VG1 and TSG6_LM (Fig. 2), indi-
cating proper access of the HA-binding domain to HA.

Taken together, we conclude from the QCM-D data
(Figs. 2 and S1) that all here-studied hyaladherin constructs
can be immobilized stably and specifically and that they
retain their ability to bind HA when immobilized, to a great

SMFS of HA-Hyaladherin Interactions

extent for VG1, TSG6_LM, and HARE_ECD and to a lesser
extent for AG1-LP.

Force spectroscopy of single HA-hyaladherin
bonds

We then studied and compared the dynamics of the four
HA -hyaladherin interactions under force by SMFS. To
this end, HA polymers were grafted at low density to sharp
AFM tips such that only one or at most a few HA chains can
contact the surface simultaneously (Fig. 1 B), thus facili-
tating the probing of single HA-hyaladherin interactions
(16). HA does not self-associate under the conditions of
our assay (48), and its extension upon tensile force thus is
dominated by the elastic stretching of flexible polymer
chains. Hyaladherins were immobilized on planar surfaces
using the methods established by QCM-D but with condi-
tions adjusted to achieve predominantly single-binding
and unbinding events. Where needed, the hyaladherin sur-
face densities could be easily tuned by adjusting the protein
concentration or incubation time. For AG1-LP, the HA-
binding activity was relatively low (cf. Fig. 2 A), and no
changes to the immobilization conditions were effectively
required. For VG1 and TSG6_LM, substantial reductions
in the incubation concentration (from 5 to 1 ug/mL) and
the incubation time (from 10 min to 5 s) were required,
which was consistent with the fast and strong binding of
HA to these proteins (cf. Fig. 2, B and C). Considering
that mass transport limits the binding of biotin to streptavi-
din, it can be estimated that the root mean-square distance
between immobilized proteins with such a brief incubation
lies roughly between 50 and 100 nm (49), a distance that
is comparable to the radius of gyration of the HA polymer
used here (75 nm (39)). Like for AG1-LP, immobilization
conditions for HARE_ECD were also not changed,
implying much denser protein coatings. A possible explana-
tion for the lower activity of HARE_ECD over VGI and
TSG6_LM in the SMFS assays is that the large N-terminus
delays access of HA to the HA-binding domain of HARE.
Although QCM-D (Fig. 2) did not show any reduced HA-
binding rate for HARE_ECD compared to VGI1 and
TSG6_LM, this may well be because of mass transport
limiting the binding in all three cases.

Representative force-separation curves, obtained by
bringing HA-modified AFM tips into contact with hyalad-
herin-coated surfaces, are shown in Fig. 3. These curves
show the typical features expected for the elastic stretching
of an HA chain followed by a rupture event.

Force curves were acquired over a range of retract veloc-
ities, with between many hundreds and a few thousand force
curves per velocity for each of the hyaladherins (Table S1),
and from their analysis, we can conclude that interactions
between a single HA chain and a single protein/receptor
are being probed in most cases. First, the overall probability
(including all tested retract velocities) of a single specific

Biophysical Journal 1714, 2910-2922, June 19, 2018 2915



Bano et al.

L.

250 nm

% o

S .
TSG6_LM ‘j

¢

30 pN

FIGURE 3 Representative examples of force-distance curves upon sepa-
ration of the HA-coated AFM tip from hyaladherin-coated surfaces (as indi-
cated) showing a single unbinding event. The maximal compressive load
upon approach was 600 pN, and force curves were recorded at a retract
speed of 1000 nm/s; red lines are fits to the worm-like chain (WLC) model.
To see this figure in color, go online.

rupture event to occur was between 6 and 19%, whereas the
majority of force curves showed no specific rupture events at
all, and only a small fraction (<2%) displayed two or more
rupture events (cf. Fig. S2, empty bars in (B)—(E), showing
data for a selected retract velocity of 2000 nm/s). This val-
idates that the stochastic rupture of mostly single bonds has
been probed. Second, all force curves showing a single
rupture event fell onto a single master curve when properly
normalized for variations in the locus of hyaladherin bind-
ing along the HA homopolymer chain (Fig. S3) (50). Third,
nonlinear regression analysis of the force curves with the
WLC model revealed a velocity-independent persistence
length of L, = 4.2 £ 0.2 nm (Fig. S4). The magnitude of
L, agrees with values previously obtained by us (4.1 £
0.4 nm (16)) and others (4.4 *= 1.2 nm (51)) from single-
molecule HA stretching experiments at comparable solution
properties, indicating that a single HA chain is being
stretched. Finally, the contour length L. between the anchor
point of HA and the hyaladherin binding locus varied
broadly between measurements, and the maximal observed
value was comparable to the total contour length of the em-
ployed HA chains (2.1 um; Fig. S5). This confirms that hy-
aladherins can bind at any position along the HA chain, as
expected given that HA is a linear homopolymer. Moreover,
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to ascertain that the specific binding of HA to hyaladherins
is being probed in the force spectroscopy assays, competi-
tion assays with shorter HA polymers (58 kDa; 10 pg/mL)
in the solution phase were performed. Under these condi-
tions, the probability to detect HA stretching and bond
breakage was indeed reduced substantially (Fig. S2, solid
bars in (B)—(E)).

A detailed statistical analysis of the rupture forces ob-
tained from all force curves showing a single specific
rupture event is presented in Fig. 4. All histograms of
rupture forces showed unimodal distributions that could be
approximated reasonably well by Gaussians. The resulting
mean rupture forces likely deviate only little from the
most probable rupture forces (because the histograms are
quite symmetric) and are displayed as a function of loading
rate in Fig. 5. For completeness, we include equivalent data
for the ECD of CD44 (CD44_ECD), which we have previ-
ously reported (16). A main result of this analysis is that the
mean rupture forces over the range of loading rates probed
are the lowest for the type A hyaladherins TSG6_LM
(19-32 pN) and HARE_ECD (17-30 pN), intermediate
for the type B hyaladherin CD44_ECD (31-45 pN) and
the type C hyaladherin VG1 (2648 pN), and highest for
the complex of the two type C hyaladherins AG1-LP
(34-78 pN).

For comparison, the dynamic force spectra in Fig. 5 also
show results for the rupture of individual streptavidin - biotin
bonds (gray squares) that we have previously reported for
an experimental setup in which streptavidin is immobilized
in the same way as done in this study (16) (Fig. S6). Such a
comparison is important because streptavidin-biotin bonds
were used to anchor HA and hyaladherins in our assays. Us-
ing CD44_ECD, we have previously shown that the
anchorage via a biotin tag to the streptavidin monolayer is
strong enough such that its breakage is rare compared to
the breakage of CD44_ECD-HA bonds (16). The rupture
forces for TSG6_LM and VG1 are clearly below the forces
required for breaking streptavidin-biotin bonds. Likewise,
the rupture forces for HARE_ECD are much lower than
those previously reported for chelates of penta- or hexahis-
tidines (52,53). This implies that a breakage of anchors
(biotin or His tags) is rare in these cases, and we can there-
fore conclude that the genuine interactions of TSG6_LM,
HARE_ECD, and VG1 with HA have been quantified. For
AG1-LP, on the other hand, the measured rupture forces
are virtually identical to those of streptavidin«biotin bonds.
This indicates that the mechanical stability of AGI-LP
bonds is comparable to or even higher than that of streptavi-
din-biotin bonds. As a consequence, the exact magnitude of
AG1-LP-HA rupture forces cannot be quantified with our
setup, and our results instead represent a lower estimate.
The complete overlap of the two data sets in Fig. 5 E also
implies that the additional biotin-streptavidin bonds that
are involved in load bearing in the HA <hyaladherin rupture
assays do not reduce the mechanical stability appreciably
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compared to the control measurement (Fig. S6), in which
fewer biotin-streptavidin bonds are connected in series
(54). Most likely, this is because the anchorages of strepta-
vidin to the biotinylated OEG monolayers (Fig. 1, B and C)
and possibly also of the biotinylated hyaladherins to strepta-
vidin are multivalent and thus very stable such that effec-
tively only a small number (one or two) of more fragile
single biotin«streptavidin connections are present in both
assays.

All plots in Fig. 5 show a roughly linear dependence of
the mean (and to a good approximation the most probable)
rupture force on the logarithm of the instantaneous loading
rate. This is in line with the predictions of the Bell-Evans
model, i.e., F = (kpT/xg)In(rxg/kottknT), where kpT is
the thermal energy, xg is the width of the energy barrier,
and k. is the unbinding rate constant in the absence of an
external load. A fit of the data sets with this model provides
kotr and xg, and values are provided in Fig. 5 for the corre-

sponding hyaladherins.

DISCUSSION

We have undertaken a systematic analysis of the nanome-
chanical properties of HA -hyaladherin bonds for hyaladher-
ins that cover all three subtypes of the Link module
superfamily. The data for four binary complexes and one
ternary HA <hyaladherin complex show a good correlation
of the mechanical strength with the size of the HA-binding

/”I’/’I’l’/’/'l’
0 20 40 60 80 100 120 140

site (Fig. 5; Table 1). At the molecular level, this suggests
that the contact between HA and the binding surface on
the hyaladherin is not released gradually, in a zipper like
fashion (akin to the peeling of tape, where the elementary
connections that constitute a bond break in series and the
rupture force are independent of the length of the binding
interface; illustrated in Fig. 6, right). Instead, it appears
more appropriate to picture the breakage as a scenario in
which all elementary connections act in parallel and break
simultaneously (Fig. 6, leff). The relatively high persistence
length of HA (L, = 4 nm, corresponding to the contour
length of four disaccharides) would be consistent with
such a scenario, i.e., the local stiffness facilitates the distri-
bution of force across a relatively long stretch of the HA
chain.

We have already pointed out that AG1-LP, VGI, and
TSG6_LM are likely to be immobilized in multiple distinct
orientations because their biotinylation is not site specific.
We were initially concerned that this may impact the direc-
tion of tensile force applied to the bond. However, each his-
togram of rupture forces showed only one significant peak
(Fig. 4), suggesting that a single type of interaction has
been probed irrespective of the hyaladherin type and loading
rate. This would imply that, at least for VG1 and TSG6_LM,
the mode of anchorage does not affect the bond mechanics
appreciably. Tailored protein constructs with anchoring
groups at defined positions may in the future enable us to
dissect how the pulling geometry affects the resistance of
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HA -hyaladherin bonds, akin to recent work on streptavi-
din-biotin bonds (55).

It may here also be recalled that TSG6_LM contains two
TSG-6 link modules because of their fusion to the dimeric
Fc region (Fig. 1 C). This raises the question of whether
the measured rupture forces (Figs. 4 C and 5 C) could be
representative of the bond of a single HA chain with two,
rather than one, TSG-6 link modules. We consider this pos-
sibility unlikely; the attachment to the Fc region imposes an
antiparallel arrangement of the two link modules, and it is

Loading rate (pN/s)

bonds are shown (in gray) for comparison (from
(16); see also Fig. S6). To see this figure in color,
go online.

1000 10000

thus difficult for a single HA strand to form a continuous
binding interface with the two modules. It is still possible
that the long HA chain loops back in the antiparallel direc-
tion and then binds to both TSG-6 link modules on the same
dimeric fusion molecule. However, this would likely result
in two consecutive rupture events when the tensile force is
applied along the HA chain, which is not supported by our
experiments (Fig. S2 D).

The situation is different for AG1-.LP, where the
HA-+AG1-LP complex was mechanically at least as strong

TABLE 1 Unbinding Forces at a Selected Instantaneous Loading Rate
HA-Binding Domain Size HA Minimal Binding Unit Mean Rupture Force,
Type Hyaladherin (Amino Acids) (Disaccharides)” Bond Probed F (pN)
A TSG-6 ~100° 4 TSG6_LM-HA 24
HARE 93¢ 3 HARE_ECD-HA 25

B CD44 ~160° 4 CD44_ECD-HA 34¢
C VGl ~200° 5 VG1-HA 37

AGI1-LP ~200 + 200 545 AGI1-LP-HA >52
Reference - - - streptavidin -biotin 52¢

“Rounded to full disaccharides, the HA-binding site may be slightly shorter, e.g., in TSG-6 (22).

®Data were taken from (23).
“Link domain spanning from HARE Gly2198 to Tyr2290.
9Data were taken from (16).
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FIGURE 6 Schematic illustration of possible scenarios for breaking
HA -hyaladherin bonds. The correlation of rupture force with bond length
suggests that the elementary connections that constitute a bond act in par-
allel and break simultaneously, rather than in a zipper-like fashion. To see
this figure in color, go online.

and most likely even stronger than the streptavidine«biotin
anchor for the protein and HA. Although a different anchor
design will be required to quantify the mechanical strength
of the HA < AG1 - LP complex in the future, our study already
demonstrates that this ternary complex is substantially
stronger than all binary HA <hyaladherin complexes tested
and that it rivals one of the highest affinity noncovalent
bonds in mechanical strength over the full range of loading
rates tested. Our finding also has implications for the inter-
pretation of an earlier study, in which the HA-AGI1-LP
complex was probed with optical tweezers using streptavi-
din-coated microbeads with biotinylated AG1<LP. Liu
et al. (56) probed bond rupture at a single pulling speed
and reported a rupture force of 40 *= 11 pN; the instanta-
neous loading rate was not provided in this study, but
from the representative force curve shown in Fig. 1 of
(56), we can estimate that it is on the order of 100 pN/s.
At this loading rate, we also found rupture forces on the
order of 40 pN (Fig. 5 A). The consistency with our data sug-
gests that Liu et al. may unintentionally have probed strep-
tavidin-biotin bonds instead of HA +AG1+LP bonds.

Over the range of loading rates covered in our experiments,
the mechanical response of all tested HA - hyaladherin inter-
actions was broadly consistent with the predictions of the
Bell-Evans model; that is, bond rupture is adequately
described by conventional unbinding across a single barrier,
and the bond lifetime is predicted to decrease with increasing
force (“slip bond”). In contrast, several groups have pro-
posed that HA and CD44 may form bonds that have the un-
usual property to strengthen over a range of forces (“catch
bond”). This hypothesis is based on the results of steered mo-
lecular dynamics simulations (18) and of experiments that
probed the overall stability of large sets of bond acting

SMFS of HA-Hyaladherin Interactions

together (18,57). Future experiments that probe a wider range
of loading rates or directly measure the lifetime of individual
HA-CD44 interactions at defined constant forces will be
interesting to settle this question and to explore if other
HA -hyaladherin interactions show an unusual dependence
of their lifetime on force. Of particular interest will be
the range of small forces (<20 pN) and loading rates
(<100 pN/s), which was hardly accessible with our force
ramp setup.

The trends in bond mechanical strengths reported in this
article broadly correlate with the biological functions of the
probed HA -hyaladherin complexes. The HA+<AG1+LP is a
core component of cartilage, which has a very slow turnover
rate partly because of the high bond strength within this
complex (27,58,59). Newly synthesized AGI1 is highly
modified in the endoplasmic reticulum of chondrocytes
and is secreted for further processing of the core protein
in the extracellular space for maturation of the G1 domain
containing the HA-binding sites to form stable interactions
with both LP and HA (60,61). Physiologically, one HA
strand will host multiple AG1+LP complexes that are incor-
porated into cartilage, and the resulting complex has a half-
life of 24 years (62). High bond strength and stability of the
HA+AG1-LP local site is crucial for the longevity of carti-
lage tissue. This is in contrast to HARE, a scavenger recep-
tor located within the solid-liquid interfaces of multiple
tissues including the liver, spleen, and lymph node (63),
which have high affinity for HA but must also release the
HA within the endosomes and traffic back to the cell sur-
face; thus, a lower bond strength would be advantageous
(64). It is estimated that HARE recycles from the cell sur-
face to recycling endosomes and back to the surface in
less than 15 min, which strengthens the case for a weaker
interaction with HA (65). The Link domains of HARE
and TSG-6 have the highest level of sequence identity
among any of the hyaladherins (66) and, correlating with
this, the same order of mechanical HA-protein binding
strength. Like HARE, TSG-6 is known to interact dynami-
cally with HA in a pH-dependent manner, and as a soluble
extracellular matrix protein, it supports the remodeling of
HA-rich matrices within healthy and inflammatory tissues
(36). What is most important for both HARE and TSG-6
is high specificity for the HA polymer but low bond strength
between the protein and ligand because high turnover (i.e.,
release of cargo) is important for the functional roles of
both proteins. The binding strength for HA -CD44 lies be-
tween HARE/TSG-6 and the HA-AGI-LP complex.
CD44 is a cell surface receptor that interacts with the actin
cytoskeletal system in quasi-stable structures and does not
recycle through the endolysosomal system nearly as
frequently as HARE (67). CD44 and its variants are impli-
cated in probing the extracellular matrix and serve as tethers
for cellular movement in a variety of cell types (e.g., im-
mune cells and cancer cells), including under the shear
stress of blood flow (11-14). Aside from its role in

Biophysical Journal 114, 2910-2922, June 19, 2018 2919



Bano et al.

attachment, a stable HA «CD44 interaction along with other
accessory proteins promotes cellular signaling events that
result in cell proliferation, dedifferentiation, and metastasis
(68,69). Here, a balanced tensile strength facilitates attach-
ment but also detachment as required for movement.

In this regard, it is remarkable that although the affinity of
CD44 for HA as measured in conventional binding assays
(i.e., without tensile stress; Kp between 10 and 100 uM, de-
pending on the glycosylation state (70)) is lower than that of
TSG-6 (~6 uM (36)) or HARE (<0.1 uM, E.N.H, unpub-
lished data), its resistance to tensile forces is substantially
higher (Table 1). This highlights that there is no strict corre-
lation between affinity and resistance to mechanical stress,
i.e., the hyaladherin family may have evolved such that
these two interaction parameters can vary with a certain de-
gree of independence.

What are the mechanical forces and loading rates exerted
on individual HA <hyaladherin interactions in biological tis-
sues? Currently, this question is difficult to answer because
the supramolecular organization of HA-rich extracellular
matrices (e.g., the intermolecular connectivity and the den-
sity of cross-links by multiple proteins) is largely unknown.
Thus, even though we have a fairly good idea of the stresses
and strains that various tissues experience, it is not known
how these are distributed to the individual molecular bonds
with the extracellular matrix. In this context, the here-pre-
sented quantitative data on the mechanical strength of indi-
vidual HA-hyaladherin provide basic, molecular-level
information that in the future can be fed into multiscale
models of extracellular matrix mechanics that link molecu-
lar and tissue mechanics. Moreover, this also highlights the
need for molecular probes that are able to measure molecu-
lar forces in tissues.

CONCLUSIONS

We have quantified the response of HA -hyaladherin bonds
to tensile forces at the single bond level by applying a
recently developed approach that is based on well-defined
protein immobilization (validated by QCM-D) and AFM
SMFS. We have measured distinct dynamic force spectra
in which the mean unbinding forces vary approximately lin-
early with the logarithm of the instantaneous loading rate
(consistent with the Bell-Evans model for bond rupture)
for all HA -hyaladherin bonds tested. We have demonstrated
that, within the range of loading rates probed (~10°-10* pN/
s), the bond of HA with AG1-LP (a complex of two type C
hyaladherins) is mechanically more resilient than with VG1
(a single type C hyaladherin) and that the mean unbinding
force decreases further for CD44 (type B hyaladherin) and
HARE and TSG-6 (type A hyaladherins). These molecu-
lar-level data contribute to our mechanistic understanding
of the mechanical properties of HA -hyaladherin complexes
and HA-rich extracellular matrices and how these arise from
their molecular composition and interactions.
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