609 research outputs found
Liver transplantation for arteriohepatic dysplasia (Alagille's syndrome)
Thirteen out of 268 children (<18 years old) underwent hepatic transplantation (OLT) for end-stage liver disease (ESLD) associated with arteriohepatic dysplasia (AHD). Seven children are alive and well with normal liver function. Six children died, four within 11 days of the operation and the other two at 4 and 10 months after the OLT. Vascular complications with associated septicemia were responsible for the deaths of three children. Two died of heart failure and circulatory collapse, secondary to pulmonary hypertension and congenital heart disease. The remaining patient died of overwhelming sepsis not associated with technical complications. Seven patients had a portoenterostomy or portocholecystostomy early in life; five of these died after the OLT. Severe cardiovascular abnormalities in some of our patients suggest that complete hemodynamic monitoring with invasive studies should be performed in all patients with AHD, especially in cases of documented hypertrophy of the right ventricle. The improved quality of life in our surviving patients confirms the validity of OLT as a treatment of choice in cases of ESLD due to AHD. © 1992 Springer-Verlag
Transplantation of multiple abdominal viscera.
Two children with the short-gut syndrome and secondary liver failure were treated with evisceration and transplantation en bloc of the stomach, small intestine, colon, pancreas, and liver. The first patient died perioperatively, but the second lived for more than 6 months before dying of an Epstein-Barr virus-associated lymphoproliferative disorder that caused biliary obstruction and lethal sepsis. There was never evidence of graft rejection or of graft-vs-host disease in the long-surviving child. The constituent organs of the homograft functioned and maintained their morphological integrity throughout the 193 days of survival
Deceptive body movements reverse spatial cueing in soccer
This article has been made available through the Brunel Open Access Publishing Fund.The purpose of the experiments was to analyse the spatial cueing effects of the movements of soccer players executing normal and deceptive (step-over) turns with the ball. Stimuli comprised normal resolution or point-light video clips of soccer players dribbling a football towards the observer then turning right or left with the ball. Clips were curtailed before or on the turn (-160, -80, 0 or +80 ms) to examine the time course of direction prediction and spatial cueing effects. Participants were divided into higher-skilled (HS) and lower-skilled (LS) groups according to soccer experience. In experiment 1, accuracy on full video clips was higher than on point-light but results followed the same overall pattern. Both HS and LS groups correctly identified direction on normal moves at all occlusion levels. For deceptive moves, LS participants were significantly worse than chance and HS participants were somewhat more accurate but nevertheless substantially impaired. In experiment 2, point-light clips were used to cue a lateral target. HS and LS groups showed faster reaction times to targets that were congruent with the direction of normal turns, and to targets incongruent with the direction of deceptive turns. The reversed cueing by deceptive moves coincided with earlier kinematic events than cueing by normal moves. It is concluded that the body kinematics of soccer players generate spatial cueing effects when viewed from an opponent's perspective. This could create a reaction time advantage when anticipating the direction of a normal move. A deceptive move is designed to turn this cueing advantage into a disadvantage. Acting on the basis of advance information, the presence of deceptive moves primes responses in the wrong direction, which may be only partly mitigated by delaying a response until veridical cues emerge
Extracellular Matrix Heterogeneity Regulates Three-Dimensional Morphologies of Breast Adenocarcinoma Cell Invasion
Plasticity and reciprocity of breast cancer cells to various extracellular matrice (ECMs) are three-dimensionally analyzed in quantitative way in a novel and powerful microfluidic in vitro platform. This successfully demonstrates the metastatic potential of cancer cells and their effective strategies of ECM proteolytic remodeling and morphological change, while interacting with other cells and invading into heterogeneous ECMs.International Research & Development Program (Grant 2009-00631)National Research Foundation of Korea (Basic Science Research Program Grant 2012-022481
Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline
The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline
The genome-defence gene Tex19.1 suppresses LINE-1 retrotransposons in the placenta and prevents intra-uterine growth retardation in mice
DNA methylation plays an important role in suppressing retrotransposon activity in mammalian genomes, yet there are stages of mammalian development where global hypomethylation puts the genome at risk of retrotransposition-mediated genetic instability. Hypomethylated primordial germ cells appear to limit this risk by expressing a cohort of retrotransposon-suppressing genome-defence genes whose silencing depends on promoter DNA methylation. Here, we investigate whether similar mechanisms operate in hypomethylated trophectoderm-derived components of the mammalian placenta to couple expression of genome-defence genes to the potential for retrotransposon activity. We show that the hypomethylated state of the mouse placenta results in activation of only one of the hypomethylation-sensitive germline genome-defence genes: Tex19.1. Tex19.1 appears to play an important role in placenta function as Tex19.1(−/−) mouse embryos exhibit intra-uterine growth retardation and have small placentas due to a reduction in the number of spongiotrophoblast, glycogen trophoblast and sinusoidal trophoblast giant cells. Furthermore, we show that retrotransposon mRNAs are derepressed in Tex19.1(−/−) placentas and that protein encoded by the LINE-1 retrotransposon is upregulated in hypomethylated trophectoderm-derived cells that normally express Tex19.1. This study suggests that post-transcriptional genome-defence mechanisms are operating in the placenta to protect the hypomethylated cells in this tissue from retrotransposons and suggests that imbalances between retrotransposon activity and genome-defence mechanisms could contribute to placenta dysfunction and disease
Collision activity during training increases total energy expenditure measured via doubly labelled water
Purpose: Collision sports are characterised by frequent high intensity collisions that induce substantial muscle damage, potentially increasing the energetic cost of recovery. Therefore, this study investigated the energetic cost of collision-based activity for the first time across any sport. Methods: Using a randomised crossover design, six professional young male rugby league players completed two different five-day pre-season training microcycles. Players completed either a collision (COLL; 20 competitive one-on-one collisions) or non-collision (nCOLL; matched for kinematic demands, excluding collisions) training session on the first day of each microcycle, exactly seven days apart. All remaining training sessions were matched and did not involve any collision-based activity. Total energy expenditure was measured using doubly labelled water, the literature gold standard. Results: Collisions resulted in a very likely higher (4.96 ± 0.97 MJ; ES = 0.30 ±0.07; p=0.0021) total energy expenditure across the five-day COLL training microcycle (95.07 ± 16.66 MJ) compared with the nCOLL training microcycle (90.34 ± 16.97 MJ). The COLL training session also resulted in a very likely higher (200 ± 102 AU; ES = 1.43 ±0.74; p=0.007) session rating of perceived exertion and a very likely greater (-14.6 ± 3.3%; ES = -1.60 ±0.51; p=0.002) decrease in wellbeing 24h later. Conclusions: A single collision training session considerably increased total energy expenditure. This may explain the large energy expenditures of collision sport athletes, which appear to exceed kinematic training and match demands. These findings suggest fuelling professional collision-sport athletes appropriately for the "muscle damage caused” alongside the kinematic “work required”. Key words: Nutrition, Recovery, Contact, Rugb
Scale-up of Malaria Rapid Diagnostic Tests and Artemisinin-Based Combination Therapy: Challenges and Perspectives in Sub-Saharan Africa.
Guido Bastiaens and colleagues describe barriers to achieving scale-up and appropriate use of rapid diagnostic tests and artemisinin-based combination therapy for malaria in sub-Saharan Africa. Please see later in the article for the Editors' Summary
Demographics of extra-articular calcaneal fractures: Including a review of the literature on treatment and outcome
Introduction: Extra-articular calcaneal fractures represent 25-40% of all calcaneal fractures and an even higher percentage of up to 60% is seen in children. A disproportionately small part of the literature on calcaneal fractures involves the extra-articular type. The aim of this study was to investigate the incidence of extra-articular calcaneal fractures in a Level 1 trauma centre, define the distribution of the various types of fractures and compare patient demographics between extra- and intra-articular calcaneal fractures. In addition the literature was reviewed for the most common types of extra-articular calcaneal fractures with regard to incidence, treatment and clinical outcome. Methods: The radiological records between 2003 and 2005 were reviewed for intra- and extra-articular calcaneal fractures. Patient gender-distribution and age were compared. A literature search was conducted for the treatment of extra-articular calcaneal fractures. Results: In this 3-year study period a total of 49 patients with 50 extra-articular calcaneal fractures and 91 patients with 101 intra-articular fractures were identified. The median age for the first group was 32.7 years, and for the second group 40.3 years; P = 0.04. Male predominance was significantly less pronounced for extra-articular (63%) compared with intra-articular fractures (79%; P = 0.04). Conclusion: One-third of all calcaneal fractures are extra-articular. Significant differences exist between the intra- and extra-articular groups, in terms of lower age and male-female ratio. The literature study shows inconsistencies in treatment options, but most extra-articular fractures are well manageable conservatively
- …
