140 research outputs found

    Biokinetics and dosimetry of (111)In-DOTA-NOC-ATE compared with (111)In-DTPA-octreotide.

    Get PDF
    PURPOSE: The biokinetics and dosimetry of (111)In-DOTA-NOC-ATE (NOCATE), a high-affinity ligand of SSTR-2 and SSTR-5, and (111)In-DTPA-octreotide (Octreoscan?, OCTREO) were compared in the same patients. METHODS: Seventeen patients (10 men, 7 women; mean age 60 years), referred for an OCTREO scan for imaging of a neuroendocrine tumour (15), thymoma (1) or medullary thyroid carcinoma (1), agreed to undergo a second study with NOCATE. Whole-body anterior-posterior scans were recorded 0.5 (100 % reference scan), 4, 24 and 48 h (17 patients) and 120 h (5 patients) after injection. In 16 patients the OCTREO scan (178 ± 15 MBq) was performed 16 ± 5 days before the NOCATE scan (108 ± 14 MBq) with identical timing; 1 patient had the NOCATE scan before the OCTREO scan. Blood samples were obtained from 14 patients 5 min to 48 h after injection. Activities expressed as percent of the initial (reference) activity in the whole body, lung, kidney, liver, spleen and blood were fitted to biexponential or single exponential functions. Dosimetry was performed using OLINDA/EXM. RESULTS: Initial whole-body, lung and kidney activities were similar, but retention of NOCATE was higher than that of OCTREO. Liver and spleen uptakes of NOCATE were higher from the start (p < 0.001) and remained so over time. Whole-body activity showed similar α and β half-lives, but the β fraction of NOCATE was double that of OCTREO. Blood T (1/2)β for NOCATE was longer (19 vs. 6 h). As a result, the effective dose of NOCATE (105 μSv/MBq) exceeded that of OCTREO (52 μSv/MBq), and the latter result was similar to the ICRP 106 value of 54 μSv/MBq. Differential activity measurement in blood cells and plasma showed an average of <5 % of NOCATE and OCTREO attached to globular blood components. CONCLUSION: NOCATE showed a slower clearance from normal tissues and its effective dose was roughly double that of OCTREO

    Cloning, expression and nuclear localization of human NPM3, a member of the nucleophosmin/nucleoplasmin family of nuclear chaperones

    Get PDF
    BACKGROUND: Studies suggest that the related proteins nucleoplasmin and nucleophosmin (also called B23, NO38 or numatrin) are nuclear chaperones that mediate the assembly of nucleosomes and ribosomes, respectively, and that these activities are accomplished through the binding of basic proteins via their acidic domains. Recently discovered and less well characterized members of this family of acidic phosphoproteins include mouse nucleophosmin/nucleoplasmin 3 (Npm3) and Xenopus NO29. Here we report the cloning and initial characterization of the human ortholog of Npm3. RESULTS: Human genomic and cDNA clones of NPM3 were isolated and sequenced. NPM3 lies 5.5 kb upstream of FGF8 and thus maps to chromosome 10q24-26. In addition to amino acid similarities, NPM3 shares many physical characteristics with the nucleophosmin/nucleoplasmin family, including an acidic domain, multiple potential phosphorylation sites and a putative nuclear localization signal. Comparative analyses of 14 members of this family from various metazoans suggest that Xenopus NO29 is a candidate ortholog of human and mouse NPM3, and they further group both proteins closer with the nucleoplasmins than with the nucleophosmins. Northern blot analysis revealed that NPM3 was strongly expressed in all 16 human tissues examined, with especially robust expression in pancreas and testis; lung displayed the lowest level of expression. An analysis of subcellular fractions of NIH3T3 cells expressing epitope-tagged NPM3 revealed that NPM3 protein was localized solely in the nucleus. CONCLUSIONS: Human NPM3 is an abundant and widely expressed protein with primarily nuclear localization. These biological activities, together with its physical relationship to the chaparones nucleoplasmin and nucleophosmin, are consistent with the proposed function of NPM3 as a molecular chaperone functioning in the nucleus

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Merkel cell carcinoma of skin-current controversies and recommendations

    Get PDF
    The review covers the current recommendations for Merkel cell carcinoma (MCC), with detailed discussion of many controversies. The 2010 AJCC staging system is more in-line with other skin malignancies although more complicated to use. The changes in staging system over time make comparison of studies difficult. A wide excision with margins of 2.5–3 cm is generally recommended. Even for primary </= 1 cm, there is a significant risk of nodal and distant metastases and hence sentinel node biopsy should be done if possible; otherwise adjuvant radiotherapy to the primary and nodal region should be given. Difficulties of setting up trials owing to the rarity of the disease and the mean age of the patient population result in infrequent reports of adjuvant or concurrent chemotherapy in the literature. The benefit, if any, is not great from published studies so far. However, there may be a subgroup of patients with high-risk features, e.g. node-positive and excellent performance status, for whom adjuvant or concurrent chemotherapy may be considered. Since local recurrence and metastases generally occur within 2 years of the initial diagnosis, patients should be followed more frequently in the first 2 years. However delayed recurrence can still occur in a small proportion of patients and long-term follow-up by a specialist is recommended provided that the general condition of the patient allows it. In summary, physician judgment in individual cases of MCC is advisable, to balance the risk of recurrence versus the complications of treatment

    Investigation of tumor hypoxia using a two-enzyme system for in vitro generation of oxygen deficiency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxygen deficiency in tumor tissue is associated with a malign phenotype, characterized by high invasiveness, increased metastatic potential and poor prognosis. Hypoxia chambers are the established standard model for <it>in vitro </it>studies on tumor hypoxia. An enzymatic hypoxia system (GOX/CAT) based on the use of glucose oxidase (GOX) and catalase (CAT) that allows induction of stable hypoxia for <it>in vitro </it>approaches more rapidly and with less operating expense has been introduced recently. Aim of this work is to compare the enzymatic system with the established technique of hypoxia chamber in respect of gene expression, glucose metabolism and radioresistance, prior to its application for <it>in vitro </it>investigation of oxygen deficiency.</p> <p>Methods</p> <p>Human head and neck squamous cell carcinoma HNO97 cells were incubated under normoxic and hypoxic conditions using both hypoxia chamber and the enzymatic model. Gene expression was investigated using Agilent microarray chips and real time PCR analysis. <sup>14</sup>C-fluoro-deoxy-glucose uptake experiments were performed in order to evaluate cellular metabolism. Cell proliferation after photon irradiation was investigated for evaluation of radioresistance under normoxia and hypoxia using both a hypoxia chamber and the enzymatic system.</p> <p>Results</p> <p>The microarray analysis revealed a similar trend in the expression of known HIF-1 target genes between the two hypoxia systems for HNO97 cells. Quantitative RT-PCR demonstrated different kinetic patterns in the expression of carbonic anhydrase IX and lysyl oxidase, which might be due to the faster induction of hypoxia by the enzymatic system. <sup>14</sup>C-fluoro-deoxy-glucose uptake assays showed a higher glucose metabolism under hypoxic conditions, especially for the enzymatic system. Proliferation experiments after photon irradiation revealed increased survival rates for the enzymatic model compared to hypoxia chamber and normoxia, indicating enhanced resistance to irradiation. While the GOX/CAT system allows independent investigation of hypoxia and oxidative stress, care must be taken to prevent acidification during longer incubation.</p> <p>Conclusion</p> <p>The results of our study indicate that the enzymatic model can find application for <it>in vitro </it>investigation of tumor hypoxia, despite limitations that need to be considered in the experimental design.</p

    Serum 25-hydroxyvitamin D is inversely associated with body mass index in cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association between vitamin D deficiency and obesity in healthy populations and different disease states remains unsettled with studies reporting conflicting findings. Moreover, current dietary recommendations for vitamin D do not take into account a person's body mass index (BMI). We investigated the relationship between serum 25-hydroxy-vitamin D [25(OH)D] and BMI in cancer.</p> <p>Methods</p> <p>A consecutive case series of 738 cancer patients. Serum 25(OH)D was measured at presentation to the hospital. The cohort was divided into 4 BMI groups (underweight: <18.5, normal weight: 18.5-24.9, overweight: 25-29.9, and obese: >30.0 kg/m<sup>2</sup>). Mean 25(OH)D was compared across the 4 BMI groups using ANOVA. Linear regression was used to quantify the relationship between BMI and 25(OH)D.</p> <p>Results</p> <p>303 were males and 435 females. Mean age at diagnosis was 55.6 years. The mean BMI was 27.9 kg/m<sup>2 </sup>and mean serum 25(OH)D was 21.9 ng/ml. Most common cancers were lung (134), breast (131), colorectal (97), pancreas (86) and prostate (45). Obese patients had significantly lower serum 25(OH)D levels (17.9 ng/ml) as compared to normal weight (24.6 ng/ml) and overweight (22.8 ng/ml) patients; p < 0.001. After adjusting for age, every 1 kg/m<sup>2 </sup>increase in BMI was significantly associated with 0.42 ng/ml decline in serum 25(OH)D levels.</p> <p>Conclusions</p> <p>Obese cancer patients (BMI >= 30 kg/m<sup>2</sup>) had significantly lower levels of serum 25(OH)D as compared to non-obese patients (BMI <30 kg/m<sup>2</sup>). BMI should be taken into account when assessing a patient's vitamin D status and more aggressive vitamin D supplementation should be considered in obese cancer patients.</p

    Reduced Levels of Membrane-Bound Alkaline Phosphatase Are Common to Lepidopteran Strains Resistant to Cry Toxins from Bacillus thuringiensis

    Get PDF
    Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Identification of biomarkers would assist in the development of sensitive DNA-based methods to monitor evolution of resistance to Bt toxins in natural populations. We report on the proteomic and genomic detection of reduced levels of midgut membrane-bound alkaline phosphatase (mALP) as a common feature in strains of Cry-resistant Heliothis virescens, Helicoverpa armigera and Spodoptera frugiperda when compared to susceptible larvae. Reduced levels of H. virescens mALP protein (HvmALP) were detected by two dimensional differential in-gel electrophoresis (2D-DIGE) analysis in Cry-resistant compared to susceptible larvae, further supported by alkaline phosphatase activity assays and Western blotting. Through quantitative real-time polymerase chain reaction (qRT-PCR) we demonstrate that the reduction in HvmALP protein levels in resistant larvae are the result of reduced transcript amounts. Similar reductions in ALP activity and mALP transcript levels were also detected for a Cry1Ac-resistant strain of H. armigera and field-derived strains of S. frugiperda resistant to Cry1Fa. Considering the unique resistance and cross-resistance phenotypes of the insect strains used in this work, our data suggest that reduced mALP expression should be targeted for development of effective biomarkers for resistance to Cry toxins in lepidopteran pests

    1α,25(OH)2-3-Epi-Vitamin D3, a Natural Physiological Metabolite of Vitamin D3: Its Synthesis, Biological Activity and Crystal Structure with Its Receptor

    Get PDF
    Background: The 1 alpha,25-dihydroxy-3-epi-vitamin-D(3) (1 alpha,25(OH)(2)-3-epi-D(3)), a natural metabolite of the seco-steroid vitamin D(3), exerts its biological activity through binding to its cognate vitamin D nuclear receptor (VDR), a ligand dependent transcription regulator. In vivo action of 1 alpha,25(OH)(2)-3-epi-D(3) is tissue-specific and exhibits lowest calcemic effect compared to that induced by 1 alpha,25(OH)(2)D(3). To further unveil the structural mechanism and structure-activity relationships of 1 alpha,25(OH)(2)-3-epi-D3 and its receptor complex, we characterized some of its in vitro biological properties and solved its crystal structure complexed with human VDR ligand-binding domain (LBD). Methodology/Principal Findings: In the present study, we report the more effective synthesis with fewer steps that provides higher yield of the 3-epimer of the 1 alpha,25(OH)(2)D(3). We solved the crystal structure of its complex with the human VDR-LBD and found that this natural metabolite displays specific adaptation of the ligand-binding pocket, as the 3-epimer maintains the number of hydrogen bonds by an alternative water-mediated interaction to compensate the abolished interaction with Ser278. In addition, the biological activity of the 1 alpha,25(OH)(2)-3-epi-D(3) in primary human keratinocytes and biochemical properties are comparable to 1 alpha,25(OH)(2)D(3). Conclusions/Significance: The physiological role of this pathway as the specific biological action of the 3-epimer remains unclear. However, its high metabolic stability together with its significant biologic activity makes this natural metabolite an interesting ligand for clinical applications. Our new findings contribute to a better understanding at molecular level how natural metabolites of 1 alpha,25(OH)(2)D(3) lead to significant activity in biological systems and we conclude that the C3-epimerization pathway produces an active metabolite with similar biochemical and biological properties to those of the 1 alpha,25(OH)(2)D(3)
    corecore