394 research outputs found

    Clinical utility of ultrasound imaging for measuring anterior thigh thickness after anterior cruciate ligament injury in an individual patient to assess postsurgery outcome

    Get PDF
    The present study investigated the clinical utility of ultrasound imaging (USI) for assessing changes in an individual’s quadriceps muscle and subcutaneous fat (SF) thickness of the anterior thigh and their relative proportions. A patient was studied prior to and after anterior cruciate ligament reconstruction (ACLR) surgery and during rehabilitation. This case study involved an 18-year-old female recreational athlete with a complete tear of the anterior cruciate ligament (ACL). Tissue thickness (SF and quadriceps muscle) was measured from transverse USI of the anterior thigh before surgery, at weekly intervals during 12 weeks of postsurgery, and then every 2 weeks for the following 12 weeks (total of 21 measurement sets). Statistically significant differences presurgery to postrehabilitation were found for muscle thickness () and SF tissue thickness () measurements. There was no difference in muscle to fat ratio (). Changes in measurements greater than the reported minimal detectable change (MDC) demonstrate the sensitivity of the USI technique as an objective tool to assess clinically useful changes in an individual’s anterior thigh muscle thickness post-ACLR surgery and during rehabilitation

    A Neuroanatomical Signature for Schizophrenia Across Different Ethnic Groups

    Get PDF
    Schizophrenia is a disabling clinical syndrome found across the world. While the incidence and clinical expression of this illness are strongly influenced by ethnic factors, it is unclear whether patients from different ethnicities show distinct brain deficits. In this multicentre study, we used structural Magnetic Resonance Imaging to investigate neuroanatomy in 126 patients with first episode schizophrenia who came from 4 ethnically distinct cohorts (White Caucasians, African-Caribbeans, Japanese, and Chinese). Each patient was individually matched with a healthy control of the same ethnicity, gender, and age (±1 year). We report a reduction in the gray matter volume of the right anterior insula in patients relative to controls (P < .05 corrected); this reduction was detected in all 4 ethnic groups despite differences in psychopathology, exposure to antipsychotic medication and image acquisition sequence. This finding provides evidence for a neuroanatomical signature of schizophrenia expressed above and beyond ethnic variations in incidence and clinical expression. In light of the existing literature, implicating the right anterior insula in bipolar disorder, depression, addiction, obsessive-compulsive disorder, and anxiety, we speculate that the neuroanatomical deficit reported here may represent a transdiagnostic feature of Axis I disorders

    A staged screening of registered drugs highlights remyelinating drug candidates for clinical trials

    Get PDF
    There is no treatment for the myelin loss in multiple sclerosis, ultimately resulting in the axonal degeneration that leads to the progressive phase of the disease. We established a multi-tiered platform for the sequential screening of drugs that could be repurposed as remyelinating agents. We screened a library of 2,000 compounds (mainly Food and Drug Administration (FDA)-approved compounds and natural products) for cellular metabolic activity on mouse oligodendrocyte precursors (OPC), identifying 42 molecules with significant stimulating effects. We then characterized the effects of these compounds on OPC proliferation and differentiation in mouse glial cultures, and on myelination and remyelination in organotypic cultures. Three molecules, edaravone, 5-methyl-7-methoxyisoflavone and lovastatin, gave positive results in all screening tiers. We validated the results by retesting independent stocks of the compounds, analyzing their purity, and performing dose-response curves. To identify the chemical features that may be modified to enhance the compounds' activity, we tested chemical analogs and identified, for edaravone, the functional groups that may be essential for its activity. Among the selected remyelinating candidates, edaravone appears to be of strong interest, also considering that this drug has been approved as a neuroprotective agent for acute ischemic stroke and amyotrophic lateral sclerosis in Japan

    Predictors of treatment response in young people at ultra-high risk for psychosis who received long-chain omega-3 fatty acids

    Get PDF
    Previous efforts in the prospective evaluation of individuals who experience attenuated psychotic symptoms have attempted to isolate mechanisms underlying the onset of full-threshold psychotic illness. In contrast, there has been little research investigating specific predictors of positive outcomes. In this study, we sought to determine biological and clinical factors associated with treatment response, here indexed by functional improvement in a pre-post examination of a 12-week randomized controlled intervention in individuals at ultra-high risk (UHR) for psychosis. Participants received either long-chain omega-3 (&omega;-3) polyunsaturated fatty acids (PUFAs) or placebo. To allow the determination of factors specifically relevant to each intervention, and to be able to contrast them, both treatment groups were investigated in parallel. Univariate linear regression analysis indicated that higher levels of erythrocyte membrane &alpha;-linolenic acid (ALA; the parent fatty acid of the &omega;-3 family) and more severe negative symptoms at baseline predicted subsequent functional improvement in the treatment group, whereas less severe positive symptoms and lower functioning at baseline were predictive in the placebo group. A multivariate machine learning analysis, known as Gaussian Process Classification (GPC), confirmed that baseline fatty acids predicted response to treatment in the &omega;-3 PUFA group with high levels of sensitivity, specificity and accuracy. In addition, GPC revealed that baseline fatty acids were predictive in the placebo group. In conclusion, our investigation indicates that UHR patients with higher levels of ALA may specifically benefit from &omega;-3 PUFA supplementation. In addition, multivariate machine learning analysis suggests that fatty acids could potentially be used to inform prognostic evaluations and treatment decisions at the level of the individual. Notably, multiple statistical analyses were conducted in a relatively small sample, limiting the conclusions that can be drawn from what we believe to be a first-of-its-kind study. Additional studies with larger samples are therefore needed to evaluate the generalizability of these findings

    Reduced parahippocampal cortical thickness in subjects at ultra-high risk for psychosis

    Get PDF
    Background Grey matter volume and cortical thickness represent two complementary aspects of brain structure. Several studies have described reductions in grey matter volume in people at ultra-high risk (UHR) of psychosis; however, little is known about cortical thickness in this group. The aim of the present study was to investigate cortical thickness alterations in UHR subjects and compare individuals who subsequently did and did not develop psychosis. Method We examined magnetic resonance imaging data collected at four different scanning sites. The UHR subjects were followed up for at least 2 years. Subsequent to scanning, 50 UHR subjects developed psychosis and 117 did not. Cortical thickness was examined in regions previously identified as sites of neuroanatomical alterations in UHR subjects, using voxel-based cortical thickness. Results At baseline UHR subjects, compared with controls, showed reduced cortical thickness in the right parahippocampal gyrus (p<0.05, familywise error corrected). There were no significant differences in cortical thickness between the UHR subjects who later developed psychosis and those who did not. Conclusions These data suggest that UHR symptomatology is characterized by alterations in the thickness of the medial temporal cortex. We did not find evidence that the later progression to psychosis was linked to additional alterations in cortical thickness, although we cannot exclude the possibility that the study lacked sufficient power to detect such difference

    Reduced parahippocampal cortical thickness in subjects at ultra-high risk for psychosis

    Get PDF
    Background: Grey matter volume and cortical thickness represent two complementary aspects of brain structure. Several studies have described reductions in grey matter volume in people at ultra-high risk (UHR) of psychosis; however, little is known about cortical thickness in this group. The aim of the present study was to investigate cortical thickness alterations in UHR subjects and compare individuals who subsequently did and did not develop psychosis. Method: We examined magnetic resonance imaging data collected at four different scanning sites. The UHR subjects were followed up for at least 2 years. Subsequent to scanning, 50 UHR subjects developed psychosis and 117 did not. Cortical thickness was examined in regions previously identified as sites of neuroanatomical alterations in UHR subjects, using voxel-based cortical thickness. Results: At baseline UHR subjects, compared with controls, showed reduced cortical thickness in the right parahippocampal gyrus (p<0.05, familywise error corrected). There were no significant differences in cortical thickness between the UHR subjects who later developed psychosis and those who did not. Conclusions: These data suggest that UHR symptomatology is characterized by alterations in the thickness of the medial temporal cortex. We did not find evidence that the later progression to psychosis was linked to additional alterations in cortical thickness, although we cannot exclude the possibility that the study lacked sufficient power to detect such differences

    Grey and white matter correlates of recent and remote autobiographical memory retrieval:Insights from the dementias

    Get PDF
    The capacity to remember self-referential past events relies on the integrity of a distributed neural network. Controversy exists, however, regarding the involvement of specific brain structures for the retrieval of recently experienced versus more distant events. Here, we explored how characteristic patterns of atrophy in neurodegenerative disorders differentially disrupt remote versus recent autobiographical memory. Eleven behavioural-variant frontotemporal dementia, 10 semantic dementia, 15 Alzheimer's disease patients and 14 healthy older Controls completed the Autobiographical Interview. All patient groups displayed significant remote memory impairments relative to Controls. Similarly, recent period retrieval was significantly compromised in behavioural-variant frontotemporal dementia and Alzheimer's disease, yet semantic dementia patients scored in line with Controls. Voxel-based morphometry and diffusion tensor imaging analyses, for all participants combined, were conducted to investigate grey and white matter correlates of remote and recent autobiographical memory retrieval. Neural correlates common to both recent and remote time periods were identified, including the hippocampus, medial prefrontal, and frontopolar cortices, and the forceps minor and left hippocampal portion of the cingulum bundle. Regions exclusively implicated in each time period were also identified. The integrity of the anterior temporal cortices was related to the retrieval of remote memories, whereas the posterior cingulate cortex emerged as a structure significantly associated with recent autobiographical memory retrieval. This study represents the first investigation of the grey and white matter correlates of remote and recent autobiographical memory retrieval in neurodegenerative disorders. Our findings demonstrate the importance of core brain structures, including the medial prefrontal cortex and hippocampus, irrespective of time period, and point towards the contribution of discrete regions in mediating successful retrieval of distant versus recently experienced events

    Investigating Unique Environmental Contributions to the Neural Representation of Written Words: A Monozygotic Twin Study

    Get PDF
    The visual word form area (VWFA) is a region of left inferior occipitotemporal cortex that is critically involved in visual word recognition. Previous studies have investigated whether and how experience shapes the functional characteristics of VWFA by comparing neural response magnitude in response to words and nonwords. Conflicting results have been obtained, however, perhaps because response magnitude can be influenced by other factors such as attention. In this study, we measured neural activity in monozygotic twins, using functional magnetic resonance imaging. This allowed us to quantify differences in unique environmental contributions to neural activation evoked by words, pseudowords, consonant strings, and false fonts in the VWFA and striate cortex. The results demonstrate significantly greater effects of unique environment in the word and pseudoword conditions compared to the consonant string and false font conditions both in VWFA and in left striate cortex. These findings provide direct evidence for environmental contributions to the neural architecture for reading, and suggest that learning phonology and/or orthographic patterns plays the biggest role in shaping that architecture
    corecore