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A staged screening of registered 
drugs highlights remyelinating drug 
candidates for clinical trials
C. Eleuteri1,*, S. Olla2,*, C. Veroni1,*, R. Umeton3, R. Mechelli3, S. Romano3, MC. Buscarinu3, 
F. Ferrari4, G. Calò4, G. Ristori3, M. Salvetti3,5,* & C. Agresti1,*

There is no treatment for the myelin loss in multiple sclerosis, ultimately resulting in the axonal 
degeneration that leads to the progressive phase of the disease. We established a multi-tiered platform 
for the sequential screening of drugs that could be repurposed as remyelinating agents. We screened 
a library of 2,000 compounds (mainly Food and Drug Administration (FDA)-approved compounds and 
natural products) for cellular metabolic activity on mouse oligodendrocyte precursors (OPC), identifying 
42 molecules with significant stimulating effects. We then characterized the effects of these compounds 
on OPC proliferation and differentiation in mouse glial cultures, and on myelination and remyelination 
in organotypic cultures. Three molecules, edaravone, 5-methyl-7-methoxyisoflavone and lovastatin, 
gave positive results in all screening tiers. We validated the results by retesting independent stocks of 
the compounds, analyzing their purity, and performing dose-response curves. To identify the chemical 
features that may be modified to enhance the compounds’ activity, we tested chemical analogs and 
identified, for edaravone, the functional groups that may be essential for its activity. Among the 
selected remyelinating candidates, edaravone appears to be of strong interest, also considering that 
this drug has been approved as a neuroprotective agent for acute ischemic stroke and amyotrophic 
lateral sclerosis in Japan.

The progress in the development of immunomodulatory therapies for relapsing-remitting multiple sclerosis could 
not be generalized to diseases where inflammation is not prominent, including the progressive forms of multiple 
sclerosis1,2. This reflects the complexities often seen by those attempting to develop effective therapies3 in disor-
ders where a neurodegenerative component is present and the experimental models are not ideal. Moreover, in 
progressive multiple sclerosis, several mechanisms participate in the pathophysiology of the disease, affecting 
different cell lineages, often with asynchronous dynamics. It is therefore possible that single treatments will bring 
limited benefit4,5. In such a perspective that may include the need of combination therapies, it may be advanta-
geous to count on a substantial number of drugs targeting different pathophysiological mechanisms6.

Drug repositioning is a consolidated strategy for tackling the above problems; it cuts the timeline and costs 
of drug development and reduces, to some extent, the need to rely on in vivo animal models, while preserv-
ing safety7–9. Moreover, thanks to repurposing efforts, academic research has been able to bring, with limited 
resources, an increasing number of compounds to phase 2 trials in multiple sclerosis and in rare neurodegener-
ative diseases10–16. Even in the case of failure to bring these drugs to licensing, these proof-of-concept studies are 
providing important contributions to our understanding of “druggable” pathophysiology in neurodegenerative 
diseases17.

Systematic approaches are being developed to fully exploit the potential of repurposing18,19, including pheno-
typic screenings which may have some advantages in diseases where the pathophysiology is poorly understood. 
This was in fact the approach taken by three recent studies that identified pharmacological agents that were able 
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to stimulate the differentiation of oligodendrocyte progenitor cells (OPC) into myelinating oligodendrocytes20–22. 
However, because of the above mentioned multiplicity of damage mechanisms, and because of the characteristics 
of the identified agents – not always compatible with prolonged treatments in chronic diseases – there is still a 
strong need to identify drugs that may be better tolerated, and possibly combined in polytherapies. Finally, a 
much-needed accomplishment is the de-risking of investments on drug development processes, including invest-
ments on repurposed drugs. Hence, the opportunity to confront data from different drug screening efforts, pos-
sibly including studies with multi-tiered evaluation systems, will be important to reduce some of the factors that 
currently dissuade investment in these diseases.

Here, we report a new assessment of the myelin repair capability of registered drugs through multiple pheno-
typic screens. Our approach was characterized by: (i) a sequential screening method that enables statistical data 
integration and hit picking across multiple phenotypic screens, allowing a robust ranking and prioritization of the 
active compounds; (ii) the validation and analysis of hits and their analogs to identify their chemical functional 
features, an essential step for compound optimization.

Results
Identification of compounds that stimulate oligodendrocyte development in a multiple pheno-
typic screen. We selected the 2,000 compounds of the Spectrum Collection library to test for the development 
of OPC into myelin forming oligodendrocytes. Since OPC development is a process that demands high-energy, 
compounds were first screened for cellular metabolic activity in mouse purified OPC cultures by the MTT assay, a 
rapid colorimetric test of cell reducing activity (Z-factor =  0.7). Differences in OPC ability to reduce the tetrazolium 
salt MTT may be due to an effect of compounds on viability, proliferation or differentiation, all of which are impor-
tant components of the remyelination process. Each compound was screened once in triplicates and an MTT value 
was quantified by an Efficacy Ratio defined as: ER =  absorbance of drug/absorbance of vehicle. Platelet derived 
growth factor (PDGF, 20 ng/ml) and tri-iodothyronin (T3, 30 ng/ml) and thyroxine (T4, 40 ng/ml), known inducers 
of OPC proliferation and differentiation, respectively, were used as positive controls (PDGF ER =  1.4 ±  0.08 and 
T3 +  T4 ER =  1.3 ±  0.05; mean ±  SEM of 5 experiments run in triplicates). On the basis of the effect of both positive 
controls, we defined a threshold of ER =  1.3, singling out 127 positive compounds that were further analyzed in 3–5 
experiments to confirm their activity (Fig. 1a). These experiments allowed for the identification of 42 compounds 
presenting a mean ER value ≥  1.3 and are suitable for human use in their present chemical form (Table 1). This 
set included known classes of pharmaceutical drugs such as anti-inflammatory agents, vasodilators, antibacterials, 
antihypertensive agents, steroids, natural products as flavonoids, and others. Among these, 5-methyl-7-methox-
yisoflavone which was incorrectly stated as methoxyvone in the Spectrum Collection library (see “Quality con-
trol” paragraph in validation section). Lovastatin, a drug that presented a mean value of ER =  1.23 ±  0.1 but with 
a demonstrated activity on OPC differentiation and myelin formation23,24 was added to this list to provide a con-
venient internal control for the screening. Moreover, statins are in an advanced phase of clinical evaluation in the 
therapy of multiple sclerosis alone or in combination with other drugs (www.clinicaltrials.gov).

We then moved to test the direct effect of the 43 (42 +  lovastatin) selected compounds on the proliferation 
and differentiation of mouse purified OPC using specific assays (screen step in Fig. 1b). By [3 H]thymidine incor-
poration experiments, we established that about half of the compounds significantly stimulated the proliferation 
of OPC in different experiments compared to vehicle alone, with an increase that ranged from 1.5 to 7 fold 

Figure 1. Cell-based screen identifies molecules with myelin repair potential. (a) Distribution of 
compounds in primary screen sorted by MTT Efficacy Ratio (n =  2,000). (b) Stepwise strategy followed to select 
2 remyelinating hits for validation studies.

http://www.clinicaltrials.gov
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compared to untreated cultures (Table 2, Prolif raw data ±  SE). In parallel experiments, real time RT-PCR was 
used to assess the effect of the compounds on the expression of transcripts for ceramide galactosyltransferase 
(CGT), the key enzyme in the biosynthesis of myelin cerebrosides, and the myelin basic protein (MBP), a major 
component of the myelin sheath. We focused our analysis on CGT and MBP since they are markers of early and 
late stage of oligodendrocyte differentiation, respectively. Several compounds induced both CGT and MBP tran-
scripts compared to vehicle alone, ranging from a 1.5 to 23 fold increase (median 4.1), and from 2.4 to 60 fold 
(median 5.6), respectively (Table 2, CGT and MBP raw data ±  SE).

Category Compound Average SD

VASODILATOR

VINPOCETINE 1.36 0.66

ISOXSUPRINE 1.54 0.23

NYLIDRIN 1.60 0.00

STEROIDS

CYPROTERONE 1.29 0.38

CHLORMADINONE ACETATE 1.69 0.30

ESTRADIOL (2X) 1.30 0.17

FLUDROCORTISONE ACETATE 1.35 0.05

FLAVONOIDS

BIOCHANIN A 2.13 0.29

QUERCITRIN 1.40 0.29

5-METHYL-7-METHOXYISOFLAVONE 1.53 0.23

ANTIHYPERTENSIVE ACE INHIBITOR
PERINDOPRIL ERBUMINE 1.30 0.21

TRANDOLAPRIL 1.30 0.13

ANTIHYPERTENSIVE SARTAN
LOSARTAN 1.30 0.18

OLMESARTAN 1.31 0.17

ANTIHYPERTENSIVE DIURETIC
DIAZOXIDE 1.32 0.05

VERATRINE SULFATE 1.40 0.20

ANTIHYPERTENSIVE β-BLOCKER ALPRENOLOL 1.37 0.25

ANTIINFLAMMATORY

HYDROXYTOLUIC ACID 1.33 0.06

S-(1,2-DICARBOXYETHYL)GLUTATHIONE 1.32 0.21

VULPINIC ACID 1.37 0.35

DIACERIN 1.33 0.06

FLUOCINOLONE ACETONIDE 1.40 0.30

BECLOMETHASONE DIPROPIONATE 1.51 0.14

ANTIBACTERIC

FENAMISAL 1.33 0.21

KANAMYCIN A SULPHATE 1.32 0.03

GENTAMICIN SULPHATE 1.44 0.15

HYGROMYCIN B 1.33 0.25

ANTIHISTAMINIC

TRIPELENNAMINE CITRATE 1.40 0.26

DIPHENYLPYRALINE HYDROCHLORIDE 1.48 0.16

ORPHENADRINE CITRATE 1.49 0.14

ANTI-DEPRESSIVE ESCITALOPRAM OXALATE 1.43 0.12

ANTIOXIDANT EDARAVONE 1.33 0.15

MUSCARINIC ANTAGONIST HYOSCYAMINE 1.53 0.12

HYPOLIPIDEMIC
LOVASTATIN 1.23 0.10

NIACIN 1.47 0.06

CATHARTIC PHENOLPHTHALEIN 1.67 0.29

COMT INHIBITOR 3,5-DINITROCATECHOL (OR-486) 1.37 0.06

MUSCARINIC AGONIST AMINOBENZTROPINE 1.33 0.06

PSYCHOSTIMULANT URIDINE TRIPHOSPHATE TRISODIUM 1.40 0.10

ANTI-INFECTIVE CINEOLE 1.38 0.35

ANTIARYTHMIC LIDOCAINE HYDROCHLORIDE 1.55 0.21

LIPASE INHIBITOR ORLISTAT 1.32 0.21

ANTIFUNGAL AVOCADYNE ACETATE 1.43 0.12

Table 1.  Compound effect on OPC metabolic activity. All 2,000 compounds of the library were screened 
blind by MTT assay in purified OPC cultures; table shows compound names and pharmacological categories 
of the 42 more active compounds. MTT value was quantified by an Efficacy Ratio defined as: ER =  absorbance 
of drug/absorbance of untreated control. The 42 drugs showing a mean value of ER ≥  1.3 and suitable for 
human use in their present chemical form were selected. Lovastatin, a drug that presented a mean value 
of ER =  1.23 ±  0.1 was added to this list because of the demonstrated activity of this compound on OPC 
differentiation and myelin formation and used as internal control of the screening.
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Compound
Prolif 
raw

Prolif 
SE

Prolif 
Score

Prolif 
Total

Diff-
CGT 
raw

Diff-
CGT 

SE

Diff_
CGT 
Score

Diff_
CGT 
Total

Diff_
MBP 
raw

Diff_
MBP 

SE

Diff_
MBP 
Score

Diff_MBP 
Total

TOTAL 
SCORE

PDGF 3.17 0.98 10.00 31.75 — — — — — — — — —
T3 + T4 — — — — 4.21 0.49 3.00 12.63 8.95 1.98 5.00 44.75 —
VULPINIC ACID 2.11 0.59 10.00 21.08 11.19 4.49 3.00 33.58 60.00 54.54 5.00 300.00 354.65
LOVASTATIN 2.94 0.26 10.00 29.36 22.86 20.35 3.00 68.57 58.25 55.69 5.00 291.24 389.17
EDARAVONE 3.52 0.64 10.00 35.19 23.08 16.09 3.00 69.25 48.11 42.19 5.00 240.55 344.99
FENAMISAL 3.15 0.41 10.00 31.55 9.52 5.06 3.00 28.57 36.89 29.81 5.00 184.47 244.59
5-METHYL-7-
METHOXYISOFLAVONE 7.05 1.36 10.00 70.54 8.86 0.34 3.00 26.59 35.95 20.86 5.00 179.73 276.86

LOSARTAN 1.14 0.23 10.00 11.44 11.11 10.23 3.00 33.34 23.24 21.14 5.00 116.21 160.98
CHLORMADINONE ACETATE 0.66 0.24 10.00 6.61 10.09 0.60 3.00 30.26 16.79 1.26 5.00 83.96 120.83
BIOCHANIN A 1.24 0.08 10.00 12.38 3.53 3.39 3.00 10.58 7.96 7.15 5.00 39.79 62.75
CYPROTERONE 1.25 0.34 10.00 12.49 2.46 0.13 3.00 7.39 7.65 0.06 5.00 38.23 58.12
OLMESARTAN 0.79 0.17 10.00 7.88 4.06 3.08 3.00 12.19 6.49 4.47 5.00 32.44 52.50
FLUOCINOLONE 
ACETONIDE 0.59 0.17 10.00 5.89 2.40 0.13 3.00 7.21 5.95 0.48 5.00 29.74 42.83

TRANDOLAPRIL 2.84 1.24 10.00 28.35 6.06 5.44 3.00 18.17 5.86 5.11 5.00 29.31 75.83
QUERCITRIN 3.90 0.44 10.00 38.96 4.68 1.76 3.00 14.05 5.10 3.09 5.00 25.48 78.48
URIDINE TRIPHOSPHATE 
TRISODIUM 4.80 0.36 10.00 47.99 3.75 0.21 3.00 11.26 5.02 0.41 5.00 25.10 84.35

DIPHENYLPYRALINE 
HYDROCHLORIDE 3.65 1.35 10.00 36.46 3.10 2.01 3.00 9.29 4.90 3.23 5.00 24.52 70.27

VERATRINE SULFATE 3.23 0.81 10.00 32.33 4.09 0.17 3.00 12.27 4.82 0.27 5.00 24.11 68.72
3,5-DINITROCATECHOL 5.55 1.35 10.00 55.47 4.74 0.39 3.00 14.22 4.76 0.19 5.00 23.78 93.48
HYGROMYCIN B 3.66 0.45 10.00 36.65 4.46 4.08 3.00 13.37 4.65 3.69 5.00 23.25 73.27
ESCITALOPRAM OXALATE 3.86 0.56 10.00 38.63 3.91 3.31 3.00 11.72 3.89 1.53 5.00 19.46 69.80
DIAZOXIDE 1.34 0.11 10.00 13.37 3.31 2.32 3.00 9.92 3.67 1.25 5.00 18.35 41.65
ESTRADIOL 1.85 0.61 10.00 18.47 1.53 0.34 3.00 4.59 2.75 1.10 5.00 13.76 36.83
AMINOBENZTROPINE 5.77 1.17 10.00 57.67 1.48 * 3.00 4.44 2.58 * 5.00 12.92 75.04
DIACERIN 1.28 0.36 10.00 12.76 0.19 * 3.00 0.58 2.56 * 5.00 12.81 26.16
PERINDOPRIL ERBUMINE 2.33 0.32 10.00 23.28 1.76 0.11 3.00 5.27 2.45 0.10 5.00 12.23 40.78
PHENOLPHTHALEIN 1.21 0.10 10.00 12.11 2.85 1.68 3.00 8.55 2.44 1.53 5.00 12.19 32.85
ORPHENADRINE CITRATE 1.08 0.39 10.00 10.84 0.41 * 3.00 1.24 1.66 * 5.00 8.29 20.36
BECLOMETHASONE 
DIPROPIONATE 0.48 0.07 10.00 4.78 1.06 * 3.00 3.17 1.55 * 5.00 7.74 15.69

NIACIN 0.77 0.21 10.00 7.75 0.70 * 3.00 2.11 1.35 * 5.00 6.73 16.58
FLUDROCORTISONE 
ACETATE 0.74 0.13 10.00 7.41 0.76 * 3.00 2.28 1.28 * 5.00 6.41 16.10

AVOCADYNE ACETATE 1.09 0.15 10.00 10.88 1.20 * 3.00 3.61 1.10 * 5.00 5.48 19.97
KANAMYCIN A SULPHATE 0.95 0.20 10.00 9.45 1.50 * 3.00 4.51 1.03 * 5.00 5.15 19.11
LIDOCAINE 
HYDROCHLORIDE 2.43 0.14 10.00 24.29 1.10 * 3.00 3.30 1.02 * 5.00 5.09 32.67

S-(1,2-DICARBOXYETHYL)
GLUTATHIONE 1.37 0.15 10.00 13.66 0.71 * 3.00 2.12 0.85 * 5.00 4.23 20.01

HYOSCYAMINE 1.35 0.40 10.00 13.52 0.43 * 3.00 1.30 0.84 * 5.00 4.18 19.00
VINPOCETINE 0.83 0.26 10.00 8.31 0.96 * 3.00 2.89 0.62 * 5.00 3.11 14.31
GENTAMICIN SULPHATE 1.16 0.21 10.00 11.59 0.67 * 3.00 2.02 0.54 * 5.00 2.69 16.30
ORLISTAT 1.87 0.36 10.00 18.66 0.70 * 3.00 2.09 0.53 * 5.00 2.65 23.41
ISOXSUPRINE 1.20 0.40 10.00 12.00 0.95 * 3.00 2.84 0.49 * 5.00 2.46 17.31
CINEOLE 1.03 0.30 10.00 10.26 0.63 * 3.00 1.90 0.45 * 5.00 2.24 14.40
TRIPELENNAMINE CITRATE 3.61 0.92 10.00 36.08 0.21 * 3.00 0.63 0.22 * 5.00 1.10 37.81
NYLIDRIN 0.94 0.07 10.00 9.38 0.09 * 3.00 0.27 0.21 * 5.00 1.04 10.68
ALPRENOLOL 3.57 0.33 10.00 35.69 0.23 * 3.00 0.70 0.09 * 5.00 0.43 36.83
HYDROXYTOLUIC ACID 2.26 0.29 10.00 22.57 0.22 * 3.00 0.65 0.05 * 5.00 0.24 23.45

Table 2. Raw data of the activity of the 43 selected compounds originating Figure 2. We assigned a different 
score to each experimental setting performed in purified OPC cultures, rewarding more late differentiation 
(Diff_MBP) than early differentiation (Diff_CGT) and both more than proliferation (Prolif; see “score 
assignment” in method section for details). The score contribution of each compound was derived by multiplying 
the assigned score to the raw data of the experimental setting it belongs to. Score contributions have been then 
summed per-compound (Total score). The asterisk indicates the drugs that have not achieved the established 
thresholds in the first gene expression analysis and were not tested again. The following positive controls were 
used: PDGF (20 ng/ml) for proliferation and T3 (30 ng/ml) and T4 (40 ng/ml) for differentiation assays.
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To select the best hits among the compounds active on the different biological processes analyzed, we ranked 
the substances by assigning a score to each experimental setting (see score assignment in methods section for 
details). Note that we rewarded differentiation more than proliferation as remyelination frequently fails due to 
a declining efficiency in the later stages of OPC development25. The score contribution of each compound was 
derived by multiplying the assigned score to the raw data of the experimental setting it belongs to (Table 2). 
Finally, score contributions have been summed per-compound and all compounds have been compared accord-
ing to their total and relative score (Fig. 2). Seven compounds appeared to emerge from the others. We therefore 
took them as potential hit compounds. All the selected hits share remarkable properties such as neuroprotective, 
anti-inflammatory and anti-oxidant activities.

Confirmation of hit compound myelin repair capability. To evaluate the remyelinating poten-
tial of the seven hits, we analyzed their activity in three biologically relevant systems of increasing complexity, 

Compound
MBP RNA level 
(Mean ± SE) p-value

CGT RNA level 
(Mean ± SE) p-value

CTR 1 ±  0 — 1 ±  0 —

T3 +  T4 2.85 ±  0.45 0.01 2.65 ±  0.9 0.09

VULPINIC ACID 1.72 ±  0.49 0.1075 1.34 ±  0.47 0.2549

LOVASTATIN 2.84 ±  0.53 0.0127 1.78 ±  0.18 0.006

METHOXYISOFLAVONE 2.32 ±  0.5 0.039 1.97 ±  0.34 0.051

EDARAVONE 3.86 ±  0.39 0.0009 2.76 ±  0.58 0.0197

CHLORMADINONE ACETATE 3.12 ±  0.57 0.0101 2.35 ±  0.56 0.037

LOSARTAN 2.38 ±  0.63 0.0467 2.8 ±  0.57 0.0532

FENAMISAL 2.78 ±  0.76 0.0726 1.38 ±  0.22 0.1106

Table 3.  Compound effect on OPC differentiation in cultures of mixed glial cells. The 7 selected compounds 
were screened for their ability to stimulate OPC differentiation in cultures of mixed glial cells. Cells were treated 
with compounds (10 μ M) or DMSO (0.001% vehicle) for 48 h and the expression of CGT and MBP mRNA was 
evaluated by real time RT-PCR. The results show that 5 out of 7 compounds significantly (p <  0.05) stimulated 
the expression of both MBP and CGT genes compared to untreated control. 5-methyl-7-methoxyisoflavone 
is abbreviated as methoxyisoflavone. Data are expressed as 2−ΔΔCt value relative to untreated control, using 
GAPDH as reference gene. T3 (30 ng/ml) and T4 (40 ng/ml) were used as positive control.

Figure 2. Compound effect on OPC proliferation and differentiation. Ranking of the best 43 hits according 
to the experimental data shown in Table 2. The scored contribution of OPC proliferation ([3 H]thymidine 
incorporation assay- grey), early differentiation (CGT Gene expression analysis- white) and late differentiation 
(MBP Gene expression analysis- black) experiments have been summed per-compound and all compounds 
have been compared according to their total and relative score. The seven drugs exhibiting an effect greater 
than 100 were selected for the next experimental setting. 5-methyl-7-methoxyisoflavone is abbreviated as 
methoxyisoflavone.
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sequentially discarding the compounds that were not able to achieve a significant effect in any one of the different  
in vitro/ex vivo tests (screen step in Fig. 1b).

Cultures of mixed glial cells containing astrocytes, oligodendrocyte lineage cells, and microglia were used to 
investigate compound effects on OPC developmental processes in the presence of mitogenic and differentiation 
factors secreted by the other glial cell populations. Cultures were incubated with each one of the seven com-
pounds for 48 h, using T3 and T4 (30 and 40 ng/ml, respectively) as positive control (Table 3). Real time RT-PCR 
was used to analyze mRNA levels of CGT and MBP in three different experiments, showing that five compounds 
significantly up-regulated both transcripts (Table 3). The effect of the anti-inflammatory vulpinic acid and the 
anti-bacterial fenamisal did not reach statistical significance.

We next tested whether the five hit compounds could promote the differentiation of endogenous OPC in 
central nervous system (CNS) tissue. Cerebellar slices were generated from mice at postnatal day 7, a time that 
corresponds to the onset of myelination. Two hours after plating, slices were treated with compounds for 5 DIV 
and the expression MBP mRNA was evaluated by real time RT-PCR in 3–5 experiments. We focused on MBP 
transcripts since this myelin marker shows a wider range of expression than CGT during the developmental 
period analyzed. Progesterone (40 μ M) was used as a positive control due to its myelin stimulating activity in this 
ex vivo model26. We found that only 5-methyl-7-methoxyisoflavone, edaravone, losartan and lovastatin signifi-
cantly (p ≤  0.05) increased MBP transcript levels relative to control slices, demonstrating their ability to promote 
OPC differentiation also in this experimental model (Fig. 3).

Subsequently, we evaluated the remyelinating potential of the four selected compounds in toxin-treated cer-
ebellar slice cultures, an ex vivo model of myelin damage where limited remyelination occurs in basal culture 
conditions. Cerebellar slices from P10 mice were cultured for 7 DIV and then treated for 16 h with lysoleci-
thin to induce demyelination, as previously described27. Immediately after toxin removal, slices were incubated 
with the compounds (20 μ M) or DMSO (0.002% vehicle) for the indicated times, using progesterone (40 μ M)  
as positive control28. By real time RT-PCR, we demonstrated that after 4 days of incubation edaravone, 
5-methyl-7-methoxyisoflavone and lovastatin, but not losartan, significantly (p ≤  0.05) stimulated MBP tran-
scripts compared to control slices (Fig. 4a). By a method of image confocal analysis quantification developed in 
house, we also evaluated the ability of the three hit compounds to induce an increase in axonal remyelination. In 
particular, the co-localization of the myelin protein MBP and the axonal protein NFH was analyzed in lysolecithin 
demyelinated slices maintained in the absence or presence of the compounds (20 μ M) for 7 days. Consistent with 
the MBP gene expression analysis, we found that edaravone, 5-methyl-7-methoxyisoflavone, and lovastatin signif-
icantly increased MBP+ myelin membranes relatively to NFH+ axons compared to control slices (Fig. 4 b and c).

Validation of edaravone and 5-methyl-7-methoxyisoflavone biological activity and chemical 
structure. By applying established procedures of the modern drug discovery pipelines, we validated the biolog-
ical activity and chemical structure of the antioxidant edaravone and the flavonoid 5-methyl-7-methoxyisoflavone. 
The hypolipidemic compound lovastatin was not included in this analysis since, as previously mentioned, it was 
used as an internal control of the screening for its documented remyelinating activity23.

Figure 3. Compound induced MBP mRNA expression in cerebellar slices. Slices were prepared from P7 
mouse cerebellum. Two hours after plating, slices were treated with compounds (20 μ M) or DMSO (0.002% 
vehicle) for 5 DIV. Expression of MBP transcript was evaluated by real time RT-PCR. The results show that 
four compounds significantly (p* ≤  0.05; p** ≤  0.01) stimulated the expression of MBP mRNA compared to 
untreated control, demonstrating their ability to promote OPC differentiation. Data are expressed as 2−ΔΔCt 
value relative to untreated control, using GAPDH as reference gene. Progesterone (40 μ M) was used as positive 
control. 5-methyl-7-methoxyisoflavone is abbreviated as methoxyisoflavone. Bars represent the mean ±  SEM of 
3–5 independent experiments. (Student’s T-Test; *p ≤  0.05; p** ≤  0.01).
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Quality Control. The analytical characterization of purity of the two hit compounds was performed by Proton 
Nuclear Magnetic Resonance Spectroscopy (1H-NMR) and Liquid chromatography–mass spectrometry (LC/
MS) techniques. On the basis of the results obtained, we identified with certainty that the active compound 
of the screening is 5-methyl-7-methoxyisoflavone, which is incorrectly identified in the library data set as the 
flavone methoxyvone (7 methoxy-5methyl 2 phenylcromen 4-one) as the two compounds differ only for the 
position of the phenyl group (isoflavones and flavones present the C ring in position 2′  and 3′  of the B ring, 
respectively). Overall we confirmed that the chemical compounds analyzed correspond to edaravone and 
5-methyl-7-methoxyisoflavone and present a purity of 97% and 99%, respectively (Supplementary Fig. S1), 
demonstrating that the activity depends exclusively on compounds and not on impurities (less than 5%).

Retesting. To confirm the compound activity and avoid false positives, we purchased independent stocks of 
the two hit compounds from different suppliers and tested their remyelinating potential in organotypic demy-
elinated slices. The increased level of MBP transcripts in slices incubated with the new stocks of edaravone and 
5-methyl-7-methoxyisoflavone (20 μ M, 4 days) compared to control slices confirmed the remyelinating poten-
tial of the two hits, demonstrating that the results obtained with the two compounds are not false positives 
(Supplementary Fig. S2).

Dose-response curves. To assess the dose dependence of the assay’s readouts, we performed a dose-response 
analysis in cultures of mixed glial cells, as this is the most suitable test among those we had employed. Cells 
were incubated with edaravone and 5-methyl-7-methoxyisoflavone at five different concentrations (0.01–30 μ M)  
for 48 h and expression of MBP mRNA was evaluated by real time RT-PCR. The results demonstrated that: i)  

Figure 4. Compound induced MBP expression and remyelination in lysolecithin-demyelinated cerebellar 
slices. Slices were prepared from P10 mouse cerebellum, cultured for 7 DIV and then treated for 16 h 
with lysolecithin to induce demyelination. Immediately after toxin removal, cultures were incubated with 
compounds (20 μ M) or DMSO (0.002% vehicle) for 4 (a) or 7 (b and c) days. (a) Total RNA was extracted and 
reverse-transcribed and MBP transcript expression was evaluated by real time RT-PCR. MBP mRNA fold 
increase was calculated as 2−ΔΔCt value relative to untreated control, using GAPDH as reference gene. Results 
show that 3 compounds significantly enhanced MBP transcript compared to untreated control. Progesterone 
(40 μ M) was used as positive control. (b) Immunostaining for MBP (green) and the axonal protein NFH (red). 
MBP staining increased and a major myelin alignment with axons was evident after treatment with the three 
analyzed compounds, relative to control. (c) Confocal quantification of remyelinated axons. The value of MBP/
NFH co-localization was divided for the corresponding NFH staining to form the “remyelination index”. The 
rate of remyelination is significantly stimulated by all three compounds compared to control. Mean ±  SEM of 
3–5 independent experiments is shown. (Student’s T-Test; *p ≤  0.05; p** ≤  0.01)



www.nature.com/scientificreports/

8Scientific RepoRts | 7:45780 | DOI: 10.1038/srep45780

the effect of both compounds was dose dependent and no activity was present at the dose of 0.01 μ M, further 
confirming that there are no false positives; ii) the lowest and highest responses of 5-methyl-7-methoxyisoflavone 
were established at 0.1 and 1 μ M concentration, respectively, with an evident decrease of the activity at 30 μ M; 
whereas, edaravone showed a significant effect at the dose of 1 μ M but it may not have reached its maximal effi-
cacy at 30 μ M (Fig. 5a and b). These results indicated that both compounds are active within a micromolar range 
but only edaravone did not show any toxic effect up to the concentration tested.

Chemical analog selection and testing. To identify a relationship between the structure and activity of two hits, 
we selected and tested structurally related chemical analogs. We selected new chemical analogs from commercial 
chemical libraries by means of a public database (Zinc, PubChem and ChemSpider), finding four available analogs 
for edaravone (Figs 1a–d and 6a,b) and five for 5-methyl-7-methoxyisoflavone, of which only one was an isofla-
vone and four were flavones (Figs 2a, 3a–d and 6d,e,). The activity of the selected analogs (10 μ M, 48 h) was eval-
uated in OPC purified cultures by MTT test, identifying two active analogs for edaravone (1b ER =  1.36 ±  0.029; 
and 1d ER =  1.44 ±  0.06) and none for 5-methyl-7-methoxyisoflavone. The biological activity of edaravone ana-
logs was then confirmed in mixed glial cell cultures with dose-response curves at six different concentrations 
(0.001–30 μ M; Supplementary Fig. S3) and in demyelinated cerebellar slices (Supplementary Fig. S4). By search-
ing for chemical analogs in the Spectrum Collection library we found three analogs of edaravone (the antipyretic 
and analgesic drugs antipyrine, aminopyrine and ramifenazone; Fig. 6b) and 7 isoflavones (Fig. 6d) that did not 
overcome the MTT test in both primary and re-testing experiments. Since in the Spectrum Collection library 
many flavones and isoflavones are present, we selected only molecules with the same scaffold of the reference 
compound (Fig. 6d).

Chemical functional feature identification. By using the chemical structure of the two hit compounds as refer-
ence and their commercial and library analogs, we were able to identify some functional groups indispensable 
for their activity. As shown in Fig. 6c, we identified four functional groups essential for the activity of edaravone: 
2 H bond acceptors (position 1 and 3, in red) plus hydrophobic group (the methyl group in position 5, in green) 
and an aromatic ring (position 2, in orange). These four groups are all present in active analogs: i) 1b has a 
para-substitution on phenyl group in R, but the presence of a fluorine (a small and electronegative atom) did not 
prevent the activity; ii) 1d is different from edaravone only for the presence of an ethyl group, which is always a 
hydrophobic group, in R1. These substitutions do not change the features responsible for the activity. On the con-
trary, the following substitutions result in loss of activity: i) the presence of an isopropylamino or dimethylamino 
or a chlorine group in R2, as in ramifenazone, aminopyrine and 1c, respectively. Actually, the active compounds 

Figure 5. Dose-response curves of the two hit compounds in cultures of mixed glial cells. Cultures 
were prepared from neonatal mouse brain. After 9 DIV, the cells were incubated with (a) 5-methyl-7-
methoxyisoflavone (methoxyisoflavone) and (b) edaravone at 5 different concentration (0.01–30 μ M) for 48 h. 
Expression of MBP mRNA was evaluated by real time RT-PCR. The results shown that both compounds dose-
dependently stimulated OPC differentiation. Data are expressed as 2−ΔΔCt value relative to untreated control, 
using GAPDH as reference gene. Values represent the mean ±  SEM of 3 independent experiments. (Student’s 
T-Test; *p ≤  0.05; p** ≤  0.01)
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do not exhibit substituent in R2, suggesting that this position must remain empty; ii) the absence of H bond 
acceptor in position 1, as in antipyrine, ramifenazone and aminopyrine; iii) the replacement of the five-membered 
ring with one to six-membered, as in 1a, which increases the distance between the hydrophobic group in position 
5 and the H bond acceptor in position 3.

The lack of active analogs of 5-methyl-7-methoxyisoflavone among the few commercially available did not 
allow for the identification of functional groups essential for its activity. However, we were able to define that: i) 
the presence of a methoxy group in position R2 may prevent the activity, as in 2a and in the library isoflavones bio-
chanin A and formonetin (Fig. 6d); ii) the position of the ring in ’2 causes loss of activity; indeed, flavones 3a, 3b, 
3c and 3d were inactive (Fig. 6e). Comparison between the chemical structure of 5-methyl-7-methoxyisoflavone 
and that of inactive isoflavones present in the library (Fig. 6d) showed that 5-methyl-7-methoxyisoflavone is the 
only compound that has a methyl group in R1, replacement with a methoxy group, as for 5–7 dimethoxyisofla-
vone (the two compounds differ only for this substituent), a hydroxyl group, as for 5–7 dihydroxyisoflavone, 
genistein, biochanin A, or a hydrogen, as for daidzein and formonetin, determines inactivity. These results suggest 
that the position in R1 must be occupied by a hydrophobic aliphatic substituent probably in combination with 
the absence of substitutions in R2. Finally, replacement in R with a hydroxyl group, as for genistein, daidzein, 
biochanin A or isopropoxy group, as for ipriflavone, are unfavorable for the activity.

Figure 6. Activity of chemical analogs of edaravone and methoxyisoflavone and identification of edaravone 
chemical features. (a) The four edaravone analogs 1a–d selected from commercial chemical libraries were used 
to confirm the structural class of edaravone structure and to identify its functional groups. Among these, only 
analogs 1b and 1d showed activity by MTT assay (see results). The activity of both analogs was confirmed in 
dose-response experiments and demyelinated cerebellar slices (Supplementary Figs S3 and S4). (b) The analogs 
antypyrine, aminopyrine and ramifenazone which were present within the Spectrum Collection library did not 
overcome the MTT test in both primary and re-testing experiments. (c) Basing on these findings four functional 
groups essential for the activity of edaravone were identified: in red 2 H bond acceptors (in position 1 and 3) 
plus in green hydrophobic group (the methyl in position 5) and in orange an aromatic ring (in position 2). (d) 
Nine isoflavones and (e) four flavones selected as analogs of 5-methyl-7-methoxyisoflavone were tested by MTT 
assay to confirm the compound activity. The analogs 2a and 3a–d were selected from commercial libraries, all 
the other compounds were present within the Spectrum Collection library. None of methoxyisoflavone analogs 
showed significant activity in both primary and re-testing experiments.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 7:45780 | DOI: 10.1038/srep45780

Prediction of compound targets. We used Chemical Similarity Network Analysis Pulldown (CSNAP) as 
the computational method to look for a possible consensus target that could explain the effect produced by the 
hit compounds edaravone, 5-methyl-7-methoxyisoflavone, and lovastatin. We included in the analysis other top 
scoring compounds of our screening (chlormadinone acetate, fenamisal, losartan, vulpinic acid) and four putative 
remyelinating compounds from other phenotypic screenings (benztropine, clemastine, clobetasol, miconazole; 
20,21,22). Biochanin A, a compound that did not exceed the screening selection, was used as a negative con-
trol. CSNAP highlighted Neuropeptide S Receptor 1 (NPSR1; Uniprot Q6W5P4) and isocitrate dehydrogenase 
(Uniprot O75874) as possible consensus targets, showing the highest cumulative Schwikowski-score (S-score) 
across our hit compounds with a meaningful pattern across the other top scoring and putative remyelinating 
compounds (Supplementary Dataset S1) as well. The NPS G-coupled receptor was selected as a target for in vitro 
validation since, besides having the highest score, it belongs to a class of receptors that are implicated in many 
diseases and are the targets of numerous therapeutic drugs29.

The investigation of the pharmacological action of edaravone, 5-methyl 7-metoxyisoflavone, lovastatin, ben-
ztropine, losartan and biochanin A at recombinant NPSR was performed in HEK293 cells stably expressing the 
mouse NPSR by a calcium mobilization assay30. The results of these experiments showed that NPS increased the 
intracellular calcium concentrations in a concentration dependent manner with pEC50 and Emax values of 8.75 
(8.30–9.20) and 335 ±  32% over the basal values, respectively. The compounds did not stimulate calcium mobi-
lization up to a concentration of 10 μ M (Supplementary Fig. S5). These compounds were then assayed as NPSR 
antagonists vs the stimulatory action elicited by NPS. In this series of experiments the selective NPSR antagonist 
SHA 68 was used as a standard. At 100 nM, SHA 68 was able to elicit a rightward displacement of the concentra-
tion response curve to NPS with a pA2 value of 7.83 (7.65–8.01). At the concentration of 10 μ M, compounds did 
not affect the concentration response curve to NPS (Supplementary Fig. S6). Therefore, the tested compounds do 
not interact with the NPSR, either as agonists or as antagonists.

Discussion
Multiple sclerosis pathophysiology is highly complex and difficult to reduce to in vitro or in vivo models where to 
investigate for new therapies. Nonetheless, high-throughput screenings for myelin repair are beginning to yield 
the first, consistent results20–22. However, because of the above complexity, false negatives and false positives are 
and will be inevitable. To limit them, comparisons of multiple screenings within and across studies are much 
needed. For the same reasons, and given the high numbers of compounds to be screened, it is important that these 
studies are structured as to balance inclusiveness and selectivity of the analysis.

CNS remyelination is the result of a specific sequence of events that are tightly regulated and recapitulate the 
process of oligodendrocyte generation that occurs during development25. Our staged series of assays, composed 
by multiple in vitro screens, allowed for the testing of compound effects on different aspects of OPC development 
and for the selection of the best hits by assessing their activity across the combined data set rather than their sta-
tus within a single analysis. This multiple phenotypic screening highlighted a substantial number of compounds 
that are suitable for human use. These molecules belong to various classes of pharmaceutical drugs and represent 
useful information for further research in the field.

Three drugs, lovastatin, edaravone and 5-methyl-7-methoxyisoflavone, convincingly demonstrated activity 
in all the tiers of the screening process; their remyelinating potential arose from an increase in OPC proliferation 
and differentiation, which are essential components of the remyelination process. Based on the evidence that 
remyelination failure is more commonly associated with the impairment of the final stage of oligodendrocyte 
developmental program25, strategies to enhance remyelination are frequently designed to promote OPC differen-
tiation into new myelinating oligodendrocytes31. However, several remyelinating molecules have been described 
to promote both proliferation and differentiation32–34 or proliferation alone35. These two processes are not mutu-
ally exclusive for the progression of oligodendrocyte lineage; indeed cAMP response element-binding protein 
(CREB), implicated in controlling myelin gene expression and oligodendrocyte generation, participates in the 
regulation of both OPC proliferation36 and differentiation37.

The biological plausibility of lovastatin as drugs with myelin repair potential confirms the validity of our 
approach and reinforces the rational for pursuing the clinical evaluation of lipophilic statins in the therapy of 
multiple sclerosis.

The hit compound edaravone is a free radical scavenger, approved as a neuroprotective agent for acute ischemic 
stroke in Japan, where it has been used for over 10 years. Surprisingly, it does not have market authorization in 
other countries38. It is a small bioactive molecule that easily crosses the blood brain barrier and has been indi-
cated as a promising drug candidate for several neurodegenerative diseases39,40. Edaravone was also investigated 
in amyotrophic lateral sclerosis patients41 and recently received approval, again in Japan, for this disease. With 
respect to multiple sclerosis, encouraging studies in the model of experimental allergic encephalomyelitis already 
exist42. It is of interest that edaravone rescues oligodendrocyte differentiation after prolonged ischemic damage in 
mice43, reduces white matter injury in a mouse model of hypoxic-ischemia44, and has anti-inflammatory effects 
in activated microglia45. The identification of two active analogs of edaravone and the purity analysis validated 
its biological and structural activity, allowing us to conclude that the remyelinating activity of edaravone is not 
a false positive. The micromolar concentration range of activity and the lack of cytotoxicity shown by edaravone 
in our experimental models are consistent with previous studies performed on different cellular types, including 
all components of cerebrovascular units46,47. The weak activity of edaravone does not seem to be a major obstacle 
to its human use as the drug is registered not only for an acute disease (ischemic stroke), but also for a chronic 
condition (amyotrophic lateral sclerosis). Moreover, there are ongoing attempts to improve its poor oral bioavail-
ability. If successful, these attempts may not only promote its use in chronic diseases but possibly also increase the 
commercial interest about its development as a licensed drug in different conditions48–50.
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On these grounds, we suggest that it is urgent to initiate the clinical evaluation of edaravone in multiple scle-
rosis, considering also that based on our structure-activity relationship analysis, the molecule may be chemically 
modified to enhance its activity: four functional groups appear to be essential for the activity together with the 
presence of a five-membered ring that allows for the correct distance between the hydrophobic group in position 
5 and the H bond acceptor in position 3.

The other hit of our screening, 5-methyl-7-methoxyisoflavone, is a semi-natural isoflavone. Isoflavones are 
the main group of flavonoids and are well characterized for their estrogenic and/or antioxidant properties. They 
are active ingredients of human diet since they are present in many daily-consumed foods, like vegetables and 
fruits. As plant-derived secondary metabolites, and in spite of some limitations about their final development as 
drugs51, they are relevant for drug discovery since they have a wide range of molecular targets. Their neuropro-
tective action may depend on estrogenic and other properties. 5-methyl-7-methoxyisoflavone has never been 
considered as a candidate for CNS repair. It shows some differences in chemical structure compared to tradi-
tional isoflavones: a methoxy group in R, found in some isoflavones, an unusual methyl group in R1 (Fig. 6d), 
but no hydroxyl groups, which are typical of flavonoids with mainly antioxidant activity. In addition, the lack 
of structure similarity to 17β -estradiol (the most potent estrogen in mammals) suggests that the activity of 
5-methyl-7-methoxyisoflavone in our assays may not be related to the estrogenic properties typical of isofla-
vones such as genistein and daidzein, an interpretation that is supported - to some extent - by the inactivity 
of genistein and daidzein in our primary screening. Unfortunately, at variance with edaravone, the analogs of 
5-methyl-7-methoxyisoflavone were not enough to allow the identification of a clear SAR. Driven synthetic mod-
ifications will be needed to improve pharmacological properties of this compound.

Overall, the possibility that the antioxidant action of the two hit compounds is not primarily responsible for 
their regenerative effect is supported by the fact that many other antioxidant compounds of the library did not 
show any activity in the screening process. Based on these considerations, the investigation of the molecular tar-
gets and pathways activated by edaravone and 5-methyl-7-methoxyisoflavone stands a good chance to uncover 
novel biological activities relevant to the regenerative process of remyelination. Apart from the elements of inter-
nal consistency of the data, and those in accord with published results from other groups, there are compounds 
that have demonstrated myelin repair potential in other experimental systems but whose efficacy did not emerge 
in our screening. In particular, the class of anticholinergic compounds with anti-muscarinic activity was not 
represented among our best hits in spite of the positive data from two different studies. While benztropine and 
clemastine had been identified as potential remyelinating compounds in screening assays performed at 1 μ M  
final concentration20,21, they showed toxicity in our primary screening performed at 10 μ M concentration. In 
MTT re-testing experiments, we confirmed the activity of both compounds at the lower concentration (1 μ M, 
data not shown). This is consistent with the issue of low difference between active and toxic doses described for 
benztropine20.

The optimization of therapeutic algorithms, or the development of new molecules with better therapeutic 
indexes, would benefit from better knowledge about the targets that are relevant for the regenerative effects of 
these drugs. So far, and including this study, none of the screenings have unequivocally defined the therapeutic 
target(s) of the identified compounds. This is not uncommon (approximately, only the 20% of the small molecule 
drugs have an identified individual molecular target) and may reflect the need for a promiscuous mechanism of 
action for “neuroprotective” drugs to be effective. Interestingly, some of the recently identified drugs with myelin 
repair potential might share a common mechanisms of action; it has been recently shown that edaravone effects 
are mediated not only by the elimination of oxidative stress, but also by the increased production of brain-derived 
neurotrophic factor (BDNF) through phosphorylation of CREB52. Similarly, lipophilic statins may exert neu-
rotrophic functions through the transcriptional activation of CREB and consequent BDNF increase53. Besides, 
the phosphorylation of CREB is also part of the cascade triggered during benztropine-induced oligodendrocyte 
differentiation20 and is involved in the regulation of OPC differentiation by GPR17, another potential target for 
the treatment of myelin damage54.

In conclusion, in spite of differences in the experimental platforms, and in the composition of the libraries of 
compounds, there are elements of consistency between the last screening studies on the remyelinating potential 
of small molecules. Moreover, all hits that emerged from the last four (20,21,22 and the present one) screenings 
are molecules that are registered for human use. This means that, while additional studies with different plat-
forms are needed, there are already enough drugs to design experimental medicine trials to explore the clinical 
efficacy of the compounds (also in combination therapies) and increase our understanding of the biology of the 
disease. The results of this study and the clinical effects in two other neurological diseases strongly suggest that 
edaravone is one of the most interesting candidates. Future work will need to concentrate more on medicinal 
chemistry studies to optimize the compounds and increase the interest for industrial development. However, all 
these advancements also urge the support of political steps and regulatory solutions to facilitate the entire process 
of repurposing up to a full marketing authorization.

Materials and Methods
Experimental design. The goal of this study was to identify new therapeutic strategies for myelin repair 
that can be readily transferred to patients with demyelinating diseases of CNS. We carried out an unbiased  
in vitro and ex vivo screening in mammalian cells with the aim of repositioning drugs according to their remyeli-
nating potential. The compound activity was first verified on the development of mouse OPC through multiple, 
sequential phenotypic screens and their myelin repair capability was then assessed in organotypic mouse brain 
slice cultures. The biological activity and chemical structure of hit compounds were validated, also allowing for 
the identification of their chemical functional features.
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Animals. CD1 Swiss mice were purchased from Harlan Laboratories (San Pietro Al Natisone, Udine, Italy). 
The experimental procedures related to the use of CD1 Swiss mice were performed in accordance with the 
approved national law with the implementation of European Union Directive nr. 86/609/CEE - D.lgs 116/92 
regarding the Protection of animals used for experimental research. The experiments were approved by the 
Service for Biotechnology and Animal Welfare of the Istituto Superiore di Sanità and by the Italian Ministry of 
Health (Authorization #271/SSA/2010 -18/03/2010).

Compound sources. The library tested was The Spectrum Collection (Micro- Source Discovery Inc., 
Groton, Conn.). An alphabetical list of the compounds is available at the Micro-Source Discovery website at 
www.msdiscovery.com/spectrum.html. The compounds are supplied as 10 mM solutions in dimethyl sulfoxide 
(DMSO). Edaravone and 5-methyl-7-methoxyisoflavone used in retesting experiments were purchased from 
Sigma-Aldrich and Ambinter (Orléans, France), respectively. Chemical analogs were purchased from Ambinter 
(2a and 3a), and from MolPort (Riga, Latvia; 1a–d and 3b,d).

Staged screening of the compounds. Primary screen. We screened 2,000 compounds of The 
Spectrum Collection library comprising primarily Food and Drug Administration (FDA)-approved com-
pounds or natural products. Purified OPC obtained from neonatal mouse primary mixed glial cultures (for 
details see Supplementary methods) were incubated with or without drugs at 10 μ M concentration in dime-
thyl sulphoxide (DMSO; 0.001% vehicle) for 48 h. PDGF(20 ng/ml, Preprotech, Rocky Hill, NJ) and T3 (30 ng/
ml; Sigma-Aldrich, St Louis, MO) and T4 (40 ng/ml; Sigma-Aldrich) were used as positive controls. The 10 μ M 
concentration was selected to obtain more primary hits and more chemical scaffold types while simultaneously 
removing compounds that may have problems of toxicity55. Compounds were first screened for their ability to 
reduce [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)] using an automated microplate 
reader (Bio-rad, Hercules, CA, USA). Active compounds were then screened for OPC proliferation and differen-
tiation assessing [3 H]thymidine incorporation and the expression of transcripts for the CGT and MBP markers 
of early and late stage of oligodendrocyte differentiation, respectively.

Score assignment. For the combined analysis of proliferation (Prolif), early differentiation (Diff_CGT) and late 
differentiation (Diff_MBP) data, we assigned a score to each of the experimental setting performed in purified 
OPC cultures: MTT score =  1, Prolif score =  10, Diff_CGT score =  3, Diff_MBP score =  5. Score numbers have 
been assigned with the aim of: (i) isolate MTT contribution [range 0–3]; (ii) keep Prolif scored contribution 
within the same range of Diff_ CGT and MBP [range 0–60]; (iii) reward both Diff_CGT and Diff_MBP more than 
proliferation since the final stage of oligodendrocyte developmental program is impaired during the remyelina-
tion process25; (iv) reward Diff_MBP more than Diff_CGT since MBP mRNA is subjected to a broader range of 
expression changes with respect to CGT mRNA during the in vitro developmental period analyzed [range 0–300] 
(Table 2).

Mixed glial cell cultures. Cells enzymatically dissociated from forebrains of newborn CD1 Swiss mice 
(1.2 ×  105 cells/cm2) were grown in Dulbecco’s modified eagle medium containing 10% Foetal Bovine Serum 
(FBS), 2 mM glutamine and penicillin (50 μ g/ml) and streptomycin (50 μ g/ml); all media, sera and reagents were 
by GIBCO (Lifetechnologies, Grand Island, NY). After 9–10 DIV, when small groups of OPC started to proliferate 
on the top of the astroglia layer together with microglial cells, medium was replaced with a defined serum-free 
medium without thyroid hormones56. Cells were then incubated with the selected compounds (10 μ M) or DMSO 
(0.001% vehicle) for 48 h. T3 (30 ng/ml; Sigma-Aldrich) and T4 (40 ng/ml; Sigma-Aldrich) were used as positive 
controls.

Organotypic cerebellar slice cultures. For myelination studies, organotypic cerebellar slices were pre-
pared from mouse cerebellum as previously described for rat26. Briefly, slices were prepared from cerebellum 
of postnatal day 7 CD1 Swiss mice and grown in culture medium with compounds at 20 μ M concentration or 
DMSO (0.002% vehicle) for 5 DIV (replacing fresh medium after 1 DIV and every 2–3 days). A compound dose 
two times higher than that used in monolayer cell cultures was used due to the thickness of the slices.

For remyelination studies, cerebellar slices were prepared from mouse cerebellum as previously described 
for rat27. Briefly, slices were prepared from cerebellum of postnatal day 10 CD1 Swiss mice and grown in culture 
medium for 7 DIV (replacing fresh medium after 1 DIV and every 2–3 days). Demyelination was then induced by 
addition of 0.5 mg/ml lysolecithin (Sigma-Aldrich) to the medium for 16 h. Two hours after toxin removal, cultures 
were incubated with the compounds (20 μ M) or DMSO (0.002% vehicle) for 4 days (for gene expression experi-
ments) or 7 days (for immunohistochemistry). Progesterone (40 μ M, Sigma-Aldrich) was used as positive control.

Automated immunohistochemistry quantification of remyelination. We used a LSM 5 Pascal 
Laser Scanning Microscope to obtain stacks of photographs of MBP and NFH immunolabelling at 1 μ m intervals 
in white matter areas at × 20 magnification in remyelinating slices with or without drugs. For each experimen-
tal point, 3 stacks were analyzed in three separate experiments in a blinded fashion by two different investi-
gators. We developed an image analysis method to automatically quantify only MBP staining overlying axons. 
We implemented a statistical evaluator based on a sound and accepted methodology57 for pixel quantification 
which are both green and red above a defined intensity overlap, producing a mask of co-localization. The value of 
co-localization of each layer within a confocal stack was divided for the corresponding NFH staining to form the 
“Index of remyelination”. Our statistic combined three steps: (i) a split channel filter that isolates different color 
channels in a given image stack; (ii) a sub-color palette matching algorithm (e.g., this was used to sample the pres-
ence of the yellow color according to the palette); (iii) the assessment of biological expression co-localization58.

http://www.msdiscovery.com/spectrum.html
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Analysis of purity. HPLC quantitative determination of the purity of edaravone and 5-methyl-7- 
methoxyisoflavone was performed by Varian Pro star (waters symmetry C18 25 ×  4.6 5 μ m, loop 10 μ l, 254 nm). 
High resolution mass spectrum was obtained with the spectrometer Mariner Applied Biosystems ESI-TOF. 
Spectra NMR (DMSO-300K) were registered using a spectrometer Bruker AVANCE III 400 MHz Ultrashield 
Plus.

Chemical analog selection. Search in public Database (PubChem, Zinc and ChemSpider) of chemical 
analogs was performed with different approaches: bio-dimensional similarity using Tanimoto score calculated 
from 2D structure fingerprint and substructure search using main scaffolds.

Chemical Similarity Network Analysis. We used Chemical Similarity Network Analysis Pull-down 
(CSNAP; http://services.mbi.ucla.edu/CSNAP; University of California, Los Angeles) as a computational method 
to look for a possible consensus target of the hit compounds identified through the phenotype-based screening. 
The technique behind CSNAP utilizes chemical similarity networks for chemotype (consensus chemical pattern) 
recognition and drug target profiling. The result of this technique is presented via a Schwikowski-score that 
associates a compound to a list of targets (Supplementary Dataset S2) through the generation of ligand-target 
interaction fingerprint59. The objective of this analysis was the identification of robust interaction networks60 and 
the identification of a possible consensus target, i.e. a target shared by the majority of the candidate compounds 
that previously showed an effect when analyzed singularly in vitro and ex vivo.

Statistical analysis. For all the experiments in which statistical analysis was performed, a paired Student’s 
t-test was used. p ≤  0.05 was considered significant.
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