120 research outputs found

    Profile and professional expectations of medical students from 11 Latin American countries: the Red-LIRHUS project

    Get PDF
    Background Latin America is undergoing a human resource crisis in health care in terms of labor shortage, misdistribution and poor orientation to primary care. Workforce data are needed to inform the planning of long-term strategies to address this problem. This study aimed to evaluate the academic and motivational profile, as well as the professional expectations, of Latin American medical students. Results We conducted an observational, cross-sectional, multi-country study evaluating medical students from 11 Spanish-speaking countries in 2011–2012. Motivations to study medicine, migration intentions, intent to enter postgraduate programs, and perceptions regarding primary care were evaluated via a self-administered questionnaire. Outcomes were measured with pilot-tested questions and previously validated scales. A total of 11,072 valid surveys from 63 medical schools were gathered and analyzed. Conclusions This study describes the profile and expectations of the future workforce being trained in Latin America. The obtained information will be useful for governments and universities in planning strategies to improve their current state of affairs regarding human resources for health care professions

    Extreme genetic fragility of the HIV-1 capsid

    Get PDF
    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies

    Polyfunctional Hiv-Specific Antibody Responses Are Associated with Spontaneous Hiv Control

    Get PDF
    Elite controllers (ECs) represent a unique model of a functional cure for HIV-1 infection as these individuals develop HIV-specific immunity able to persistently suppress viremia. Because accumulating evidence suggests that HIV controllers generate antibodies with enhanced capacity to drive antibody-dependent cellular cytotoxicity (ADCC) that may contribute to viral containment, we profiled an array of extra-neutralizing antibody effector functions across HIV-infected populations with varying degrees of viral control to define the characteristics of antibodies associated with spontaneous control. While neither the overall magnitude of antibody titer nor individual effector functions were increased in ECs, a more functionally coordinated innate immune–recruiting response was observed. Specifically, ECs demonstrated polyfunctional humoral immune responses able to coordinately recruit ADCC, other NK functions, monocyte and neutrophil phagocytosis, and complement. This functionally coordinated response was associated with qualitatively superior IgG3/IgG1 responses, whereas HIV-specific IgG2/IgG4 responses, prevalent among viremic subjects, were associated with poorer overall antibody activity. Rather than linking viral control to any single activity, this study highlights the critical nature of functionally coordinated antibodies in HIV control and associates this polyfunctionality with preferential induction of potent antibody subclasses, supporting coordinated antibody activity as a goal in strategies directed at an HIV-1 functional cure

    Toxicity of neem's oil, a potential biocide against the invasive mussel Limnoperna fortunei (Dunker 1857)

    Get PDF
    The golden mussel Limnoperna fortunei (Dunker 1857) is one of the most distributed Nuisance Invasive Species (NIS) in South America, and a threat of great concern for the industry of the area. In this study, we carried out toxicity tests made with a Neem's oil solution with L. fortunei larvae and benthonic adults (7, 13 and 19 ± 1 mm). Tests with non-target species (Daphnia magna, Lactuca sativa and Cnesterodon decemmculatus) were also made with the aim to evaluate the potential toxicity of the Neem's solution in the environment. The LC100 of Neem's solution obtained for larvae was 500 μl/L, a value much higher than the one obtained for D. magna and C. decemmaculatus. Thus, we recommend that it should not be used in open waters. However, since the adults were killed in 72 h and the larvae in 24 h, this product can be used in closed systems, in man-made facilities.Facultad de Ciencias Naturales y Muse

    A Low T Regulatory Cell Response May Contribute to Both Viral Control and Generalized Immune Activation in HIV Controllers

    Get PDF
    HIV-infected individuals maintaining undetectable viremia in the absence of therapy (HIV controllers) often maintain high HIV-specific T cell responses, which has spurred the development of vaccines eliciting HIV-specific T cell responses. However, controllers also often have abnormally high T cell activation levels, potentially contributing to T cell dysfunction, CD4+ T cell depletion, and non-AIDS morbidity. We hypothesized that a weak T regulatory cell (Treg) response might contribute to the control of viral replication in HIV controllers, but might also contribute to generalized immune activation, contributing to CD4+ T cell loss. To address these hypotheses, we measured frequencies of activated (CD38+ HLA-DR+), regulatory (CD4+CD25+CD127dim), HIV-specific, and CMV-specific T cells among HIV controllers and 3 control populations: HIV-infected individuals with treatment-mediated viral suppression (ART-suppressed), untreated HIV-infected “non-controllers” with high levels of viremia, and HIV-uninfected individuals. Despite abnormally high T cell activation levels, controllers had lower Treg frequencies than HIV-uninfected controls (P = 0.014). Supporting the propensity for an unusually low Treg response to viral infection in HIV controllers, we observed unusually high CMV-specific CD4+ T cell frequencies and a strong correlation between HIV-specific CD4+ T cell responses and generalized CD8+ T cell activation levels in HIV controllers (P≤0.001). These data support a model in which low frequencies of Tregs in HIV controllers may contribute to an effective adaptive immune response, but may also contribute to generalized immune activation, potentially contributing to CD4 depletion

    Viral Protein Fragmentation May Broaden T-Cell Responses to HIV Vaccines

    Get PDF
    High mutation rates of human immunodeficiency virus (HIV) allows escape from T cell recognition preventing development of effective T cell vaccines. Vaccines that induce diverse T cell immune responses would help overcome this problem. Using SIV gag as a model vaccine, we investigated two approaches to increase the breadth of the CD8 T cell response. Namely, fusion of vaccine genes to ubiquitin to target the proteasome and increase levels of MHC class I peptide complexes and gene fragmentation to overcome competition between epitopes for presentation and recognition.three vaccines were compared: full-length unmodified SIV-mac239 gag, full-length gag fused at the N-terminus to ubiquitin and 7 gag fragments of equal size spanning the whole of gag with ubiquitin-fused to the N-terminus of each fragment. Genes were cloned into a replication defective adenovirus vector and immunogenicity assessed in an in vitro human priming system. The breadth of the CD8 T cell response, defined by the number of distinct epitopes, was assessed by IFN-Îł-ELISPOT and memory phenotype and cytokine production evaluated by flow cytometry. We observed an increase of two- to six-fold in the number of epitopes recognised in the ubiquitin-fused fragments compared to the ubiquitin-fused full-length gag. In contrast, although proteasomal targeting was achieved, there was a marked reduction in the number of epitopes recognised in the ubiquitin-fused full-length gag compared to the full-length unmodified gene, but there were no differences in the number of epitope responses induced by non-ubiquitinated full-length gag and the ubiquitin-fused mini genes. Fragmentation and ubiquitination did not affect T cell memory differentiation and polyfunctionality, though most responses were directed against the Ad5 vector.Fragmentation but not fusion with ubiquitin increases the breadth of the CD8 T vaccine response against SIV-mac239 gag. Thus gene fragmentation of HIV vaccines may maximise responses

    Structural and regulatory diversity shape HLA-C protein expression levels

    Get PDF
    Expression of HLA-C varies widely across individuals in an allele-specific manner. This variation in expression can influence efficacy of the immune response, as shown for infectious and autoimmune diseases. MicroRNA binding partially influences differential HLA-C expression, but the additional contributing factors have remained undetermined. Here we use functional and structural analyses to demonstrate that HLA-C expression is modulated not just at the RNA level, but also at the protein level. Specifically, we show that variation in exons 2 and 3, which encode the α1/α2 domains, drives differential expression of HLA-C allomorphs at the cell surface by influencing the structure of the peptide-binding cleft and the diversity of peptides bound by the HLA-C molecules. Together with a phylogenetic analysis, these results highlight the diversity and long-term balancing selection of regulatory factors that modulate HLA-C expression

    Allogeneic Lymphocytes Persist and Traffic in Feral MHC-Matched Mauritian Cynomolgus Macaques

    Get PDF
    Thus far, live attenuated SIV has been the most successful method for vaccinating macaques against pathogenic SIV challenge; however, it is not clear what mechanisms are responsible for this protection. Adoptive transfer studies in mice have been integral to understanding live attenuated vaccine protection in models like Friend virus. Previous adoptive transfers in primates have failed as transferred cells are typically cleared within hours after transfer.Here we describe adoptive transfer studies in Mauritian origin cynomolgus macaques (MCM), a non-human primate model with limited MHC diversity. Cells transferred between unrelated MHC-matched macaques persist for at least fourteen days but are rejected within 36 hours in MHC-mismatched macaques. Cells trafficked from the blood to peripheral lymphoid tissues within 12 hours of transfer.MHC-matched MCM provide the first viable primate model for adoptive transfer studies. Because macaques infected with SIV are the best model for HIV/AIDS pathogenesis, we can now directly study the correlates of protective immune responses to AIDS viruses. For example, plasma viral loads following pathogenic SIV challenge are reduced by several orders of magnitude in macaques previously immunized with attenuated SIV. Adoptive transfer of lymphocyte subpopulations from vaccinated donors into SIV-naĂŻve animals may define the immune mechanisms responsible for protection and guide future vaccine development
    • …
    corecore