852 research outputs found
<i>C-elegans</i> model identifies genetic modifiers of alpha-synuclein inclusion formation during aging
Inclusions in the brain containing alpha-synuclein are the pathological hallmark of Parkinson's disease, but how these inclusions are formed and how this links to disease is poorly understood. We have developed a <i>C-elegans</i> model that makes it possible to monitor, in living animals, the formation of alpha-synuclein inclusions. In worms of old age, inclusions contain aggregated alpha-synuclein, resembling a critical pathological feature. We used genome-wide RNA interference to identify processes involved in inclusion formation, and identified 80 genes that, when knocked down, resulted in a premature increase in the number of inclusions. Quality control and vesicle-trafficking genes expressed in the ER/Golgi complex and vesicular compartments were overrepresented, indicating a specific role for these processes in alpha-synuclein inclusion formation. Suppressors include aging-associated genes, such as sir-2.1/SIRT1 and lagr-1/LASS2. Altogether, our data suggest a link between alpha-synuclein inclusion formation and cellular aging, likely through an endomembrane-related mechanism. The processes and genes identified here present a framework for further study of the disease mechanism and provide candidate susceptibility genes and drug targets for Parkinson's disease and other alpha-synuclein related disorders
The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase
Copyright: © 2013 Gwynn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by a Wellcome Trust project grant to MD (Reference: 077368), an ERC starting grant to MD (Acronym: SM-DNA-REPAIR) and a BBSRC project grant to PM, NS and MD (Reference: BB/I003142/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Microbiological and chemical monitoring of Marsala base wine obtained by spontaneous fermentation during large-scale production
The present work was undertaken to evaluate the effect of the natural winemaking on
the microbial and chemical composition of Marsala base wine. To this purpose, a
large-scale vinification process of Grillo grape cultivar was monitored from harvesting
to the final product. Total yeasts (TY) showed a rapid increase after must pressing and
reached values almost superimposable to those registered during the conventional
winemakings. Lactic acid bacteria (LAB) were registered at the highest levels
simultaneously to yeast growth at the beginning of the process. Saccharomyces
cerevisiae was the species found at the highest concentrations in all samples
analysed. Several strains (n= 16) was registered at high levels during the alcoholic
fermentation and/or aging of wine; only two of them were detected on the grape
surface. Lactobacillus plantarum was the LAB species most frequently isolated during
the entire vinification process. Ethanol content was approximately 14% (v/v) at the end
of vinification. The value of pH did not greatly vary during the process and the volatile
acidity (VA) was detected at low concentrations during the entire transformation. The
concentration of malic acid rapidly decreased during the AF; on the other hand, lactic
acid showed an irregular trend during the entire process. trans-caffeil tartaric acid was
the most abundant hydroxycinnamoyl tartaric acid and volatile organic compounds
(VOC) were mainly represented by isoamylic alcohol and isobutanol
Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro
Propolis is a resin collected by bees from plant buds and exudates, which is further processed through the activity of bee enzymes. Propolis has been shown to possess many biological and pharmacological properties, such as antimicrobial, antioxidant, immunostimulant and antitumor activities. Due to this bioactivity profile, this resin can become an alternative, economic and safe source of natural bioactive compounds.Antitumor action has been reported in vitro and in vivo for propolis extracts or its isolated compounds; however, Portuguese propolis has been little explored. The aim of this work was to evaluate the in vitro antitumor activity of Portuguese propolis on the human colon carcinoma cell line HCT-15, assessing the effect of different fractions (hexane, chloroform and ethanol residual) of a propolis ethanol extract on cell viability, proliferation, metabolism and death.
METHODS:
Propolis from Angra do Heroísmo (Azores) was extracted with ethanol and sequentially fractionated in solvents with increasing polarity, n-hexane and chloroform. To assess cell viability, cell proliferation and cell death, Sulforhodamine B, BrDU incorporation assay and Anexin V/Propidium iodide were used, respectively. Glycolytic metabolism was estimated using specific kits.
RESULTS:
All propolis samples exhibited a cytotoxic effect against tumor cells, in a dose- and time-dependent way. Chloroform fraction, the most enriched in phenolic compounds, appears to be the most active, both in terms of inhibition of viability and cell death. Data also show that this cytotoxicity involves disturbance in tumor cell glycolytic metabolism, seen by a decrease in glucose consumption and lactate production.
CONCLUSION:
Our results show that Portuguese propolis from Angra do Heroísmo (Azores) can be a potential therapeutic agent against human colorectal cancer.We thank the Portuguese Science and Technology Foundation (FCT) for VMG fellowship (ref. SFRH/BI/33503/2008). The authors thank Mr. Antonio Marques from Frutercoop - Azores, who kindly collected and provided the propolis sample for the study
Geographic variation in the aetiology, epidemiology and microbiology of bronchiectasis
Bronchiectasis is a disease associated with chronic progressive and irreversible dilatation of the bronchi and is characterised by chronic infection and associated inflammation. The prevalence of bronchiectasis is age-related and there is some geographical variation in incidence, prevalence and clinical features. Most bronchiectasis is reported to be idiopathic however post-infectious aetiologies dominate across Asia especially secondary to tuberculosis. Most focus to date has been on the study of airway bacteria, both as colonisers and causes of exacerbations. Modern molecular technologies including next generation sequencing (NGS) have become invaluable tools to identify microorganisms directly from sputum and which are difficult to culture using traditional agar based methods. These have provided important insight into our understanding of emerging pathogens in the airways of people with bronchiectasis and the geographical differences that occur. The contribution of the lung microbiome, its ethnic variation, and subsequent roles in disease progression and response to therapy across geographic regions warrant further investigation. This review summarises the known geographical differences in the aetiology, epidemiology and microbiology of bronchiectasis. Further, we highlight the opportunities offered by emerging molecular technologies such as -omics to further dissect out important ethnic differences in the prognosis and management of bronchiectasis.NMRC (Natl Medical Research Council, S’pore)MOH (Min. of Health, S’pore)Published versio
Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond.
Cells have a number of mechanisms to maintain protein homeostasis, including proteasome-mediated degradation of ubiquitinated proteins and autophagy, a regulated process of ‘self-eating’ where the contents of entire organelles can be recycled for other uses. The unfolded protein response prevents protein overload in the secretory pathway. In the past decade, it has become clear that these fundamental cellular processes also help contain inflammation though degrading pro-inflammatory protein complexes such as the NLRP3 inflammasome. Signaling pathways such as the UPR can also be co-opted by toll-like receptor and mitochondrial reactive oxygen species signaling to induce inflammatory responses. Mutations that alter key inflammatory proteins, such as NLRP3 or TNFR1, can overcome normal protein homeostasis mechanisms, resulting in autoinflammatory diseases. Conversely, Mendelian defects in the proteasome cause protein accumulation, which can trigger interferon-dependent autoinflammatory disease. In non-Mendelian inflammatory diseases, polymorphisms in genes affecting the UPR or autophagy pathways can contribute to disease, and in diseases not formerly considered inflammatory such as neurodegenerative conditions and type 2 diabetes, there is increasing evidence that cell intrinsic or environmental alterations in protein homeostasis may contribute to pathogenesis
Recommended from our members
LRRK2 at the interface of autophagosomes, endosomes and lysosomes
Over the past 20 years, substantial progress has been made in identifying the underlying genetics of Parkinson’s disease (PD). Of the known genes, LRRK2 is a major genetic contributor to PD. However, the exact function of LRRK2 remains to be elucidated. In this review, we discuss how familial forms of PD have led us to hypothesize that alterations in endomembrane trafficking play a role in the pathobiology of PD. We will discuss the major observations that have been made to elucidate the role of LRRK2 in particular, including LRRK2 animal models and high-throughput proteomics approaches. Taken together, these studies strongly support a role of LRRK2 in vesicular dynamics. We also propose that targeting these pathways may not only be beneficial for developing therapeutics for LRRK2-driven PD, but also for other familial and sporadic cases
Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
Improved Immunodetection of Endogenous α-Synuclein
α-Synuclein is a key molecule in understanding the pathogenesis of neurodegenerative α-synucleinopathies such as Parkinson's disease. Despite extensive research, however, its precise function remains unclear partly because of a difficulty in immunoblotting detection of endogenous α-synuclein. This difficulty has largely restricted the progress for α-synucleinopathy research. Here, we report that α-synuclein monomers tend to easily detach from blotted membranes, resulting in no or very poor detection. To prevent this detachment, a mild fixation of blotted membranes with paraformaldehyde was applied to the immunoblotting method. Amazingly, this fixation led to clear and strong detection of endogenous α-synuclein, which has been undetectable by a conventional immunoblotting method. Specifically, we were able to detect endogenous α-synuclein in various human cell lines, including SH-SY5Y, HEK293, HL60, HeLa, K562, A375, and Daoy, and a mouse cell line B16 as well as in several mouse tissues such as the spleen and kidney. Moreover, it should be noted that we could clearly detect endogenous α-synuclein phosphorylated at Ser-129 in several human cell lines. Thus, in some tissues and cultured cells, endogenous α-synuclein becomes easily detectable by simply fixing the blotted membranes. This improved immunoblotting method will allow us to detect previously undetectable endogenous α-synuclein, thereby facilitating α-synuclein research
Lack of evidence for a genetic association between FGF20 and Parkinson's disease in Finnish and Greek patients
BACKGROUND: Fibroblast growth factor 20 (FGF20) is a neurotrophic factor preferentially expressed in the substantia nigra of rat brain and could be involved in dopaminergic neurons survival. Recently, a strong genetic association has been found between FGF20 gene and the risk of suffering from Parkinson's disease (PD). Our aim was to replicate this association in two independent populations. METHODS: Allelic, genotypic, and haplotype frequencies of four biallelic polymorphisms were assessed in 151 sporadic PD cases and 186 controls from Greece, and 144 sporadic PD patients and 135 controls from Finland. RESULTS: No association was found in any of the populations studied. CONCLUSION: Taken together, these findings suggest that common genetic variants in FGF20 are not a risk factor for PD in, at least, some European populations
- …
