984 research outputs found
Perceptions of fishers and developers on the co-location of offshore wind farms and decapod fisheries in the UK
The predicted expansion of the global offshore wind sector is likely to increase conflicts as users of the coastal zone compete for space, and the displacement of fisheries is of particular concern. It is therefore important to explore opportunities that could support the co-existence of offshore wind farms (OWFs) and fishing activity. In addition to ecological evidence on the effects of OWFs on commercially exploited species, the co-location issue requires understanding of the perceptions of fishers and OWF developers on key constraints and opportunities. Interviews were carried out in 2013 with 67 fishers in South Wales and Eastern England and with 11 developers from major energy companies, to discover experiences and opinions on the co-location of OWFs with crab and lobster fisheries. Developers expressed broad support for co-location, perceiving potential benefits to their relationship with fishers and their wider reputation. Fishers had more mixed opinions, with geographical variation, and exhibited a range of risk perception. The lack of reported experience of potting within OWFs was not related to stock concerns but to uncertainty around safety, gear retrieval, insurance and liability. Clear protocols and communication to address these issues are essential if co-location is to be feasible. Scale may also limit the potential benefits to fishers, especially in that large offshore OWFs are likely to be inaccessible to much of the inshore fleet. There remains the potential to enhance the artificial reef effects of OWFs by deploying additional material between the turbines, but options to finance such schemes, and how investment by OWF developers could be offset against compensation paid to displaced fishers, require further investigation
Developing conceptual models that link multiple ecosystem services to ecological research to aid management and policy, the UK marine example
Our understanding of ecological processes that lead to ecosystem services is still evolving but ecological research aims to understand the linkages between the ecosystem and services. These linkages can affect trade-offs between different ecosystem services. Understanding these linkages, by considering multiple ecosystem services simultaneously supports management of the environment and sustainable use of resources. The UK marine environment is relatively data rich, yet the links between ecosystem and several ecosystem services and linkages between services are poorly described. A workshop with 35 marine scientists was used to create a conceptual model that links ecosystem components and key processes to four services they provide and to highlight trade-offs between them. The model was subsequently further developed to include pressures and mitigating management measures. The models are discussed in terms of their application to marine data to facilitate evidence-based marine management and their usefulness to communicate management measures with managers and stakeholders
Recreational use of offshore wind farms: Experiences and opinions of sea anglers in the UK
The expansion of offshore wind farms (OWFs) is likely to increase conflict with other marine users as different sectors compete for space. There may also be positive interactions, as the artificial reef effects from energy infrastructure have the potential to sustain and enhance fishing opportunities. Recreational sea angling is an important sector within the UK but the experiences and opinions of UK sea anglers with respect to OWFs have not been documented. To address this, an online survey was undertaken with recreational anglers around the UK (n=199). Respondents represented a range of socio-demographic and angling characteristics, although male, more frequent and older fishers as well as club members were over-represented compared to a 2012 national survey. One quarter of the respondents had fished around the perimeter of or within an OWF, most on multiple occasions, and 73% of those who had not expressed a willingness to do so in future. Anglers reported both positive and negative effects on catch success when fishing near or within OWFs compared to their experiences of the same site prior to OWF development. Outcomes for individual species were also mixed. Anglers recognised the potential artificial reef effects of OWFs and their role as a “safe haven”, particularly due to the exclusion of commercial fishers. Negative perceptions included restricted access, harm to marine wildlife, and visual impact. There is little evidence that OWFs will have a significant economic impact on recreational fishing, as most anglers are unlikely to change their behaviour in response to future developments
Topological Modes in One Dimensional Solids and Photonic Crystals
This is the final version of the article. Available from American Physical Society via the DOI in this record.It is shown theoretically that a one-dimensional crystal with time reversal symmetry is characterized by a Z_{2} topological invariant that predicts the existence or otherwise of edge states. This is confirmed experimentally through the construction and simulation of a photonic crystal analogue in the microwave regime.We thank an anonymous referee for helpful comments. The authors acknowledge financial support from the EPSRC through the QUEST program grant (Grant No. EP/I034548/1), C.A.M.B. was supported by QinetiQ and the EPSRC through the Industrial CASE scheme (Grant No. 08000346). H.M. is supported by a grant from the U. S. Department of Energy to the Particle Astrophysics Theory group at CWRU. T.J.A. is funded by the Research Corporation for Science Advancement through a Cottrell Award
Applying the natural capital approach to decision making for the marine environment
The aspirations for natural capital and ecosystem service approaches to support environmental decision-making have not been fully realised in terms of their actual application in policy and management contexts. Application of the natural capital approach requires a range of methods, which as yet have not been fully tested in the context of decision making for the marine environment. It is unlikely that existing methodologies, which were developed for terrestrial systems and are based on land cover assessment approaches, will ever be feasible in the marine context at the national scale. Land cover approaches are also fundamentally insufficient for the marine environment because they do not take account of the water column, the significant interconnections between spatially disparate components, or the highly dynamic nature of the marine ecosystem, for example the high spatial mobility of many species. Data gaps have been a significant impediment to progress, so alternative methods that use proxies for quality information as well as the opportunities for remote sensing should be explored further. Greater effort to develop methodologies specifically for the marine environment is required, which should be interdisciplinary and cross-sectoral, coherent across policy areas, and applicable across a range of contexts
Energy-food nexus in the marine environment: A macroeconomic analysis on offshore wind energy and seafood production in Scotland
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThe rapid development of offshore wind farms (OWFs) has stimulated debate about its overall socioeconomic impacts. Expanding the scale of OWFs increases the availability and affordability of electricity but could displace existing fishing activities and reduce food supply. To evaluate these impacts from a macroeconomic perspective, a computable general equilibrium (CGE) model is developed, using Scotland as a case study. A particular focus is placed on the disaggregated electricity and seafood sectors, their interconnectedness from an energy-food nexus perspective, and the distributional effects across household groups. This paper explores, from macroeconomic perspective, the trade-offs in the energy-food nexus between expanding OWFs and the seafood sectors, together with the impacts on food and energy security. The results suggest that, through economic linkages, increasing the number of OWFs would have a negative, but limited, effect on seafood production sectors. However, the falling cost of electricity from OWFs would have a positive impact on the economy overall and benefit lower income households, contributing to a reduction in fuel poverty. The model results raise the awareness of nexus linkages between OWFs and seafood production and are applicable to policies involving the development of other offshore renewables.University of Exete
The Maximal Inverse Seesaw from Operator and Oscillating Asymmetric Sneutrino Dark Matter
The maximal supersymmetric inverse seesaw mechanism (MSIS)
provides a natural way to relate asymmetric dark matter (ADM) with neutrino
physics. In this paper we point out that, MSIS is a natural outcome if one
dynamically realizes the inverse seesaw mechanism in the next-to minimal
supersymmetric standard model (NMSSM) via the dimension-five operator
, with the NMSSM singlet developing TeV scale VEV; it
slightly violates lepton number due to the suppression by the fundamental scale
, thus preserving maximally. The resulting sneutrino is a
distinguishable ADM candidate, oscillating and favored to have weak scale mass.
A fairly large annihilating cross section of such a heavy ADM is available due
to the presence of singlet.Comment: journal versio
Bridging the gap between energy and the environment
Meeting the world’s energy demand is a major challenge for society over the coming century. To identify the most sustainable energy pathways to meet this demand, analysis of energy systems on which policy is based must move beyond the current primary focus on carbon to include a broad range of ecosystem services on which human well-being depends. Incorporation of a broad set of ecosystem services into the design of energy policy will differentiates between energy technology options to identify policy options that reconcile national and international obligations to address climate change and the loss of biodiversity and ecosystem services. In this paper we consider our current understanding of the implications of energy systems for ecosystem services and identify key elements of an assessment. Analysis must consider the full life cycle of energy systems, the territorial and international footprint, use a consistent ecosystem service framework that incorporates the value of both market and non-market goods, and consider the spatial and temporal dynamics of both the energy and environmental system. While significant methodological challenges exist, the approach we detail can provide the holistic view of energy and ecosystem services interactions required to inform the future of global energy policy
Global ecological, social and economic impacts of marine plastic
This research takes a holistic approach to considering the consequences of marine plastic pollution. A semi-systematic literature review of 1191 data points provides the basis to determine the global ecological, social and economic impacts. An ecosystem impact analysis demonstrates that there is global evidence of impact with medium to high frequency on all subjects, with a medium to high degree of irreversibility. A novel translation of these ecological impacts into ecosystem service impacts provides evidence that all ecosystem services are impacted to some extent by the presence of marine plastic, with a reduction in provision predicted for all except one. This reduction in ecosystem service provision is evidenced to have implications for human health and wellbeing, linked particularly to fisheries, heritage and charismatic species, and recreation
Biodiversity and ecosystem function: making sense of numerous species interactions in multi-species communities
peer-reviewedUnderstanding the biodiversity and ecosystem function relationship can be challenging in species‐rich ecosystems. Traditionally, species richness has been relied on heavily to explain changes in ecosystem function across diversity gradients. Diversity–Interactions models can test how ecosystem function is affected by species identity, species interactions, and evenness, in addition to richness. However, in a species‐rich system, there may be too many species interactions to allow estimation of each coefficient, and if all interaction coefficients are estimable, they may be devoid of any sensible biological meaning. Parsimonious descriptions using constraints among interaction coefficients have been developed but important variability may still remain unexplained. Here, we extend Diversity–Interactions models to describe the effects of diversity on ecosystem function using a combination of fixed coefficients and random effects. Our approach provides improved standard errors for testing fixed coefficients and incorporates lack‐of‐fit tests for diversity effects. We illustrate our methods using data from a grassland and a microbial experiment. Our framework considerably reduces the complexities associated with understanding how species interactions contribute to ecosystem function in species‐rich ecosystems.Science Foundation Irelan
- …