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Abstract. Understanding the biodiversity and ecosystem function relationship can be challenging in 

species-rich ecosystems. Traditionally, species richness has been relied on heavily to explain changes 

in ecosystem function across diversity gradients. Diversity-Interactions models can test how 

ecosystem function is affected by species identity, species interactions and evenness, in addition to 

richness. However, in a species-rich system, there may be too many species interactions to allow 

estimation of each coefficient, and if all interaction coefficients are estimable, they may be devoid of 

any sensible biological meaning. Parsimonious descriptions using constraints among interaction 

coefficients have been developed but important variability may still remain unexplained. Here, we 

extend Diversity-Interactions models to describe the effects of diversity on ecosystem function using 

a combination of fixed coefficients and random effects. Our approach provides improved standard 

errors for testing fixed coefficients and incorporates lack-of-fit tests for diversity effects. We 

illustrate our methods using data from a grassland and a microbial experiment. Our framework 

considerably reduces the complexities associated with understanding how species interactions 

contribute to ecosystem function in species-rich ecosystems.  

 

Key words: biodiversity and ecosystem function relationship; community structure; evenness; 

Diversity-Interactions model; mixed model; variability; random diversity effects; random effects; 

richness; species interactions; species rich; variance components. 

 

INTRODUCTION 

Widespread study of the biodiversity and ecosystem function (BEF) relationship has led to 

broad consensus that increasing the biodiversity of a system improves its ability to maintain and/or 

increase functionality (Bell et al. 2005, Hooper et al. 2005, Duffy 2009, Finn et al. 2013). The benefits 

of biodiversity to ecosystem function are frequently quantified using species richness (e.g. Spehn et 
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al. 2005) but modelling interactions among species and/or evenness, in addition to richness, can 

lead to enhanced understanding of diversity driven improvements to ecosystem function (Wilsey 

and Polley 2004, Connolly et al. 2011, Finn et al. 2013). However, modelling species interactions 

becomes increasingly difficult as species richness, and hence the number of interactions, increases. 

The Diversity-Interactions (DI) (Kirwan et al. 2007, Kirwan et al. 2009, Dooley et al. 2015) and 

Generalised Diversity-Interactions (GDI) (Connolly et al. 2013) modelling approaches estimate the 

combined contributions of species-specific and pairwise species interaction effects to total 

ecosystem functioning. These models have successfully assessed the impact of variables that 

determine community structure such as species identity, species initial proportions, species 

interactions, species richness and evenness on ecosystem function. Any two species may interact to 

affect ecosystem function in a positive, negative or neutral way and the combined effect of all 

interactions in a multi-species community is the ‘diversity effect’. However, the ‘full’ pairwise 

interaction DI or GDI model requires a coefficient for every possible pairwise interaction in the 

system and when there is a large species pool there may be too many coefficients to estimate (due 

to study design), or if coefficients are estimable, they become uninformative or difficult to interpret 

due to their large number. Combining a small number of fixed coefficients (biologically motivated 

where possible, Kirwan et al. 2009) with random effects, to capture remaining variability in 

ecosystem function due to species interactions, could provide a more parsimonious and biologically 

informative description of species interaction effects than estimating all individual pairwise 

interactions as fixed coefficients. 

The relationship between ecosystem function and diversity can assume many forms, 

generally an increasing response to diversity (often measured as richness) that may saturate at 

higher diversity levels (Tilman et al. 1997), as in Figure 1. Variation in ecosystem function among 

communities across levels of richness may be somewhat constant (Fig. 1a) or may vary (Fig. 1b); this 

variation is likely caused by factors such as species identities, community composition, species 
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relative abundances, species interactions or evenness (Connolly et al. 2013). A process of random 

selection of species is commonly used to determine the composition of communities at each level of 

richness in designed factorial experiments and the associated variability in ecosystem function can 

be measured as a variance component in BEF models (Schmid et al. 2002). However, with DI and GDI 

models, differences in communities at a given level of richness can be attributed to the identity of 

the species, how species interact and the evenness of the community rather than modelling it as a 

single ‘random selection’ variance component.  

In this paper, we extend the DI and GDI models (Kirwan et al. 2009, Connolly et al. 2013) to a 

mixed modelling framework to develop a parsimonious solution to modelling diversity effects in 

species-rich ecosystems that will sufficiently explain the variability in ecosystem function due to 

numerous species interactions. We model species interactions using a small number of fixed 

coefficients combined with random effects to capture remaining differences among pairwise species 

interactions. This approach provides a lack-of-fit test for the fixed component of the diversity effect 

and improves model inference by using an appropriate variance structure. We illustrate our 

modelling framework using data from two experiments, one grassland (“Jena” with nine species) and 

one microbial (“Bell” with 72 species); these data sets lead to a high number of pairwise species 

interactions, 36 and 2556 respectively. Estimating a unique coefficient for each pairwise interaction 

in the case of the Jena data is possible but 36 coefficients is a high number to interpret and likely to 

be biologically uninformative as a result. Estimating a unique coefficient for each interaction with 

the Bell data is not possible since there are more interactions than data points, nor is it desirable 

since 2556 fixed coefficient estimates would be devoid of useful biological information. A motivating 

question for our work is: How can the effects on ecosystem function of the numerous species 

interactions in these experiments be captured using a small number of coefficients without missing 

out on important variability? 
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MATERIALS AND METHODS 

Example data sets 

We introduce the two illustrative data sets: the “Jena” and the “Bell” data sets. The Jena data set 

was from one year of a nine-species grassland experiment in Jena, Germany (Roscher et al. 2004, 

Roscher et al. 2005). There were 206 communities assembled with various levels of species richness 

(1, 2, 3, 4, 6 or 9 species) across four blocks. Each pair of species appeared together in exactly 30 

communities. The species were classified into three functional groups (grasses, non-legume herbs 

and legumes), and dry aboveground biomass in 2003 (the year after establishment) was measured. 

The Bell data set was from a 72-species microbial experiment (Bell et al. 2005). There were 1,374 

microcosm communities inoculated with species of bacteria across varying richness levels (1, 2, 3, 4, 

6, 8, 9, 12, 18, 24, 36 and 72 species). Each pair of species appeared together in 26 communities on 

average. The average daily respiration rate (over a period of 28 days) of the bacterial community 

was recorded. Additional information on both experiments is in Appendix S1.  

 

Model descriptions 

Diversity-Interactions (DI) models (Kirwan et al. 2007, Kirwan et al. 2009) can be expressed 

in the general form of  

y = ID + DEfixed           (1) 

where ID stands for ‘identity effects’ and quantifies expected species monoculture behaviour, and 

includes treatment or block effects; DEfixed stands for ‘diversity effect’ and is comprised of a number 

of fixed coefficients representing interactions among species. For example: 

   
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where the first two terms comprise the ID component, the third term comprises the DEfixed 

component and ),0(~ 2

1 N . The ecosystem function is y, Pi is the initial relative abundance of 

the ith species in a pool of s species (i=1,...,s), and A can include a block and/or a treatment factor. 

The coefficient βi is the expected performance of species i in monoculture and δij measures the 

potential interactive effect of species i with species j (for i,j=1,…,s and i<j) on the ecosystem function 

(y). The diversity effect (Σ δij PiPj in equation (2)) is the difference between the expected mixture 

response based solely on the species monoculture responses (ΣβiPi+αA) and that including mixing 

effects.  An additional coefficient, 1,  that enters the model as a power to PiPj can be included to 

allow for non-linearity in the interaction terms; this model is known as the Generalised Diversity-

Interactions (GDI) model (Connolly et al. 2013). The DEfixed component can take many forms; in 

equation (2), the ‘full’ pairwise interaction Diversity-Interactions model is specified and the diversity 

effect requires estimating s(s-1)/2 δij coefficients, which is, for example, six coefficients in a four-

species system but 190 coefficients in a 20-species system. Kirwan et al. (2009) provide several 

alternatives for the DEfixed component including the average pairwise model where interactions 

among species are all assumed to be equal, the functional group model where interactions among 

species are dictated by functional group membership, and the additive species model where each 

species contributes a constant additive amount to its interaction with any another species.  

Here, we propose using a description of the diversity effect with a small number of fixed 

coefficients, and augmenting it with random effects to fully capture the variability in ecosystem 

function due to species interactions. We extend equation (1) to include random effects to measure 

the additional variability due to pairwise species interactions: 

y = ID + DEfixed + DErandom         (3) 

In this model, DEfixed contains fewer coefficients than the full model which has an interaction 

coefficient for each pair of species (equation (2)). For example, it might be assumed that all 

interaction coefficients are equal, leading to the realisation of equation (3):  
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where ),0(~ 2
2Ndij  and ),0(~ 2

1 N . The DEfixed component here assumes that all δij 

coefficients are equal to δav, while the DErandom component recognises that there may be variability in 

the true δij around δav and 2
2  measures this variability. The purpose of the DEfixed component is to 

elicit as much information as possible in as low a number of fixed coefficients as possible. The 

DErandom component is constructed by adding each PiPj term to the model as a random effect and 

constraining them to have the same variability and with zero covariances. This necessitates the 

inclusion of a large number of random effects, one for each pair of interactions; for our illustrative 

data sets this is 36 and 2556 random effects as they had 9 and 72 species respectively, but only one 

additional model parameter ( 2
2 ) is required. The inclusion of these many random effects with a 

common variance is quite different to the typical use of random effects (which are usually indexed 

by a community level factor, e.g. block) but is a statistical technique to allow estimation of the 

variability across the δij coefficients. Both variance parameters ( 2
1 and 2

2 ) will feed into the 

standard errors for all the fixed coefficients in the model. Including a power coefficient, 2, on the 

PiPj’s in the DErandom component, allows for flexibility in how the marginal variance of the response 

(y) varies across community structures. 

 

Model estimation and comparisons 

We used least squares to fit models with no random effects, profile likelihood to estimate 

power coefficients (1 and 2), and restricted maximum likelihood (REML) to fit models with random 

effects; the software package SAS version 9.3 (SAS Institute Inc) was used to fit all models. 
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We tested various forms of the DEfixed component using F-tests, or likelihood ratio tests (LRT) 

for comparisons involving the non-linear power coefficient on interaction terms. We tested inclusion 

of the DErandom component using LRT. One argument against the use of LRT to test random effects is 

that it is overly conservative on account of variances being bounded below by 0 (Self and Liang 1987, 

Stram and Lee 1994, Mc Culloch and Searle 2001). To overcome this we recommend divided the LRT 

P-value by 2 (Littell et al. 2006, pages 752-3). There are two possible outcomes for the likelihood 

ratio test of DErandom:  

1. The test is significant, showing that the random effects (DErandom) are needed. This indicates 

that the DEfixed component isn’t sufficient to explain the variability in y caused by species 

interactions. The random effects will account for this additional variability and the variance 

term ( 2
2 ) will be incorporated into the standard errors for fixed coefficients providing 

more reliable tests for them. The random effects can be estimated using empirical best 

linear unbiased predictors (eBLUPs) and explored for further information. 

2. Alternatively, the test is not significant, indicating no need to include the random effects. 

The DErandom component should be omitted and it can be assumed that the DEfixed component 

is sufficiently explaining variability attributed to species interactions. This outcome shows no 

evidence of lack of fit in the DEfixed component, validating the results and inference provided 

by it.  

Thus, regardless of the outcome of the test for any specific data set, testing the DErandom component 

plays an important role in the analysis.  

The residual error term in equation (3) is assumed to have a constant variance (
2
1

 ) but it 

may be affected by community structure. Using LRT, we tested whether or not the residual variance 

differs for monocultures and mixtures by assuming  to be normally distributed with mean 0 and 

with variance 2
1a

  for monocultures and 2
1b

 for mixtures; under the null hypothesis 2
1a

 = 2
1b

 = 
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2
1

 . Allowing the residual variance to differ depending on community structure could be further 

explored, for example, by allowing the residual error term to vary by richness or evenness. Splitting 

of the residual variance in this way can be included in any BEF model (e.g. the presence / absence 

method of Bell et al. 2009), not just one, such as ours, that has random pairwise interactions built in. 

 

Application of our approach to the two data sets 

We used the following procedures to select our model for each data set:  

1. We selected a ‘baseline’ model which involved exploring a range of options for the DEfixed 

component (e.g. the functional group or additive species models, see Appendix S2 for the 

full list of models tested), each of which contained a relatively small number of fixed 

coefficients (but no random effects were included at this stage).  

2. The baseline model was extended to test inclusion of the DErandom component and the 

residual error variance was tested for a difference among monocultures and mixtures.  

3. Significance of each DEfixed coefficient was re-evaluated using the new variance structure (if 

applicable).  

 

RESULTS 

The baseline model selected for the Jena grassland data set included interaction terms that 

were functional group specific (Appendix S2: Table S1, model 3). In the ID component of this model 

was an identity coefficient for each species, and block effects; the DEfixed component included six 

interaction coefficients: three ‘within functional group’ coefficients where any pair of species from a 

functional group were assumed to interact in the same way and three ‘between functional group’ 

coefficients where any species from one functional group was assumed to interact in the same way 
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with any species from the second functional group. It was possible to fit the full pairwise interaction 

models (i.e. 36 δij coefficients) via fixed coefficients (equation 2). This model was a better fit than the 

functional group model (Appendix S2: Table S1, P=0.012), but in practice, 36 fixed coefficients is a 

high number to elicit useful biological meaning from, and with many other data sets it will not be 

possible to fit the full pairwise interactions model.  

Extending the baseline model to include the random interaction terms was significant (Table 

1a, model J1 vs. J2, P = 0.008). This means that using the six functional group interaction coefficients 

was not sufficient to explain the variability caused by all 36 pairwise species interactions and fitting 

the dij random terms bridged the gap between the six fitted coefficients and the possible 36 fixed 

coefficients with a single variance component. A power coefficient on the PiPj in the DErandom 

component was estimated but did not improve the model fit further (tested for a difference from 1 

using a likelihood ratio test, P = 0.237) and was kept at 1. Fitting different residual error variances to 

monocultures and mixtures did not improve the model fit (Table 1a, J2 vs. J3). Thus, the final 

selected model for the Jena data set was one that included within- and between-functional group 

interactions and had random effects for pairwise interactions: 

     
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where ),0(~ 2
2Ndij  and ),0(~ 2

1 N ; model J2 in Appendix S3 gives the full specification. The 

variance estimates were 2

1̂ =15,311 and 2

2̂ =90,101, all other coefficient estimates are in Appendix 

S4, Table S1. Interaction between a grass and herb was the highest among the six estimated 

interaction coefficients (Fig. 2a). We estimated the 36 random effects (dij’s) for the Jena data and 

added each to the corresponding functional group estimate (Fig. 2a); variability among individual 

interaction estimates within each group was highest for the grass-grass and grass-herb interaction 

groups. See Appendix S4 for model diagnostics using the estimated random effects. 
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There are no ‘functional groupings’ with the Bell microbial data, as there are with the Jena 

data, therefore the baseline model fitting included testing of the average pairwise species model and 

the additive species model. The Generalised Diversity-Interaction model, with an average pairwise 

interaction effect and power coefficient on the interactions, was selected as the baseline model 

(Appendix S2: Table S2). The fit of the baseline model was not improved by including the DErandom 

component or by splitting the residual variance by monoculture and mixture (Table 1b). Thus, the 

final model for the Bell data included the average interaction fixed effect with 1 power coefficient 

and no random interaction effects: 

 
 




s

ji
ji

jiav

s
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1)(   

where ),0(~ 2

1 N , and 2

1̂ =7.55, av̂ = 2.12 and 1̂ =0.79. A histogram of the estimated identity 

effect (i) coefficients is shown in Appendix S5. It was not possible to fit the full pairwise interactions 

model here (that would require the estimation of 2556 coefficients for which there is not enough 

data); our result is therefore quite powerful. First, it shows that two coefficients av, and θ1 were 

sufficient to define the diversity effect in the average BEF relationship (i.e. there was no evidence of 

lack of fit in the two coefficient explanation of diversity effects). Second, variation of community 

responses around this relationship was determined solely by the residual error variation, the 

contribution of the variation of individual pairwise interaction terms was negligible.  

Model predictions for each data set and the raw data are shown in Figure 2 (b and c). The 

Jena data set is given in Data S1 and is also available in Connolly et al. (2011), and SAS code to fit the 

models in Table 1a is provided in Data S1. The models can also be fitted using the ASREML-R package 

in R (code in Data S1) this package is only available by trial or by purchase from VSN International 

(Butler et al. 2009). In Appendix S6, we compare and discuss the two software options used for 

fitting our method.  
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DISCUSSION 

The main aim of our framework was to model the effects of multiple species’ interactions on 

ecosystem function using only a small number of coefficients. We achieved this through eliciting as 

much information as possible on species interactions via a small number of fixed coefficients, and 

supplementing this with random effects to explain any further variability in ecosystem function 

attributed to species interactions. Our extended Diversity-Interactions modelling framework is 

particularly useful for species-rich ecosystems which can be complex, with potentially a large 

number of interactions affecting ecosystem function. A major benefit of including random 

interaction effects is the ability to test for lack of fit in the fixed effect coefficients of the diversity 

effect. The inclusion of random interaction effects also feeds into the estimation of standard errors 

of the model fixed coefficients, thus improving inference. Our modelling approach is suited to data 

from ecosystems that generate more interactions than can be estimated or that permit sensible 

interpretation; this may be a five-species pool or higher.   

The concept of random pairwise interactions is grounded in both statistical and biological 

motivations. From a practical perspective, it may not be possible to fit the large number of pairwise 

interactions as fixed terms in a species-rich system and therefore using a small number of fixed 

coefficients combined with random effects is a statistical convenience that bridges any gap in 

unexplained variability between a ‘reduced’ model compared to the elusive ‘full’ model with all 

pairwise interactions fitted as fixed. However, it is not just a statistical convenience; even if the study 

design permits estimation of all fixed pairwise interactions, it is unlikely that they will be biologically 

informative due to the their large number as was the case with the Jena data set which had 36 

species interactions. Also, the extra random variation will automatically be built into the standard 

errors of predicted mean responses from the model and so will reflect the extra uncertainty in 

prediction due to the extra variation. If the functional group model was fitted to the Jena data 

without the random effects, the standard errors on the model estimates would be incorrect since 
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important pairwise species variability would have been omitted. For the Jena data, it is evident that 

a large portion of the variability in biomass is due to how species within and between functional 

groups interact; for example, there is almost no overlap in the estimated individual pairwise species 

interactions for grass-grass compared with grass-herb interactions (Fig. 2a). This means that 

information from the functional group interaction estimates, combined with the identity effect 

estimates (Appendix S4, Table S1), can influence management practices aimed at maximising yield, 

whilst the model still acknowledges that there is variability caused by species interactions in addition 

to the functional group explanation.  

For the Bell data, it was surprising that only two coefficients were needed to describe 

pairwise interactions given that 72 species were investigated. The non-significant random effects 

test is powerful as it validates the inference from the parsimonious description of the diversity 

effects: there was no additional variability in species interactions beyond the estimated average 

effect. When the random effects are significant, we recommend estimation and examination of the 

random effects; doing so allows assessment of the relative importance of the DEfixed and DErandom 

components (e.g. Fig. 2a). If exploration of the random effects indicates that variability in the 

DErandom component is considerably more important than that explained by the DEfixed component, 

practical information derived from the fixed diversity effect coefficients is less influential. However, 

clustering techniques applied to the estimated random effects could identify patterns among the 

interactions that may inform future biological hypotheses; this may be particularly relevant when a 

priori species groupings are not available.  

The identity effects in our model could be assumed to follow a random distribution 

(Lipowsky et al. 2015) with the fixed identity effects (i in equations 2 and 4) constrained in a 

biologically sensible manner. In a species rich system, many degrees of freedom are used in 

estimating the species identity effects and a benefit of introducing random identity effects is to 

reduce the number of coefficients. A drawback however, is that predictive ability of the model is 
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reduced as the estimates of species behaviour in monoculture feed into predictions of the behaviour 

of a mixture. As such, we recommend fitting all identity effects as fixed coefficients when possible, 

but if study design limits this or if multiple experiments are being analysed together, introducing 

random identity effects may help improve model parsimony.  

Our framework offers a modelling approach that is parsimonious and informative. The 

method has the ability to greatly reduce the number of coefficients required to model the effects of 

species’ interactions on ecosystem functioning, thereby simplifying the description of diversity 

effects without ignoring potentially important ecosystem function variability. This is an improvement 

on current DI models (Kirwan et al. 2009, Connolly et al. 2013), particularly pertinent for species-rich 

systems, and still retains all the benefits of Diversity-Interactions models. These benefits include 

understanding how species interact (Kirwan et al. 2009, Connolly et al. 2013), the ability to predict 

ecosystem function(s) for any set of species at any relative abundances across richness and evenness 

gradients and the ability to identify combinations of species that lead to a strong (or weak) 

performance of ecosystem function(s) (Dooley et al. 2015), thus increasing our knowledge of 

complex biodiversity and ecosystem function relationships.   
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TABLE 1. Model comparisons for (a) the Jena and (b) the Bell data sets. The full algebraic specification of each model is in Appendix S3. Abbreviations: # c = 

the number of fixed coefficients + variance parameters, -2LL = -2 log likelihood (from REML estimation), LRT = likelihood ratio test statistic.    

                

Model # Model terms # c  -2LL Comparison Testing LRT P-value 

(a) Jena data set 

      J1 ID + DEfixed 18 + 1 2394.5 
    

J2 ID + DEfixed + DErandom 18 + 2 2388.8 J1 vs. J2 2
2 = 0 5.7 0.008 

J3 ID + DEfixed + DErandom, resid var split 18 + 3 2385.3 J2 vs. J3 2
1

2
1 ba    3.5 0.061 

     
 

  
(b) Bell data set 

  
    

B1 ID + DEfixed 74 + 1 6464.1 
    

B2 ID + DEfixed + DErandom 74 + 2 6463.2 B1 vs. B2 2
2 = 0 0.9 0.171 

B3 ID + DEfixed + DErandom, resid var split 74 + 3 6463.1 B2 vs. B3 2
1

2
1 ba    0.1 0.752 
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FIG. 1. Illustration of how the variation of community responses () around the mean response (_____) 

may be (a) constant or (b) may change across the richness axis.  

 

FIG. 2. (a) Estimated fixed effect functional group interactions (­) combined with estimated random 

effects for each pair of species () for the Jena data. Predicted ecosystem function for the average 

community at each level of richness (solid line) with raw data superimposed for (b) the Jena and (c) 

the Bell data sets. 
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