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H I G H L I G H T S
� Obligations for climate, biodiversity and ecosystem services must be aligned.

� Ecosystem service based assessments of energy systems can inform energy policy.
� Assessment to incorporate life cycle stages across spatial and temporal scales.
� Implications for ecosystem services differentiate between energy options.
� Pathways to decarbonisation should be identified based on such a holistic assessment.
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a b s t r a c t

Meeting the world’s energy demand is a major challenge for society over the coming century. To identify
the most sustainable energy pathways to meet this demand, analysis of energy systems on which policy
is based must move beyond the current primary focus on carbon to include a broad range of ecosystem
services on which human well-being depends. Incorporation of a broad set of ecosystem services into the
design of energy policy will differentiates between energy technology options to identify policy options
that reconcile national and international obligations to address climate change and the loss of biodi-
versity and ecosystem services. In this paper we consider our current understanding of the implications
of energy systems for ecosystem services and identify key elements of an assessment. Analysis must
consider the full life cycle of energy systems, the territorial and international footprint, use a consistent
ecosystem service framework that incorporates the value of both market and non-market goods, and
consider the spatial and temporal dynamics of both the energy and environmental system. While sig-
nificant methodological challenges exist, the approach we detail can provide the holistic view of energy
and ecosystem services interactions required to inform the future of global energy policy.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Meeting the world’s energy demand over the coming century
represents a major challenge for society (Foresight, 2011),
r Ltd. This is an open access article
increased further by the need to do so while simultaneously
minimising the environmental burdens associated with energy
production and use (Naik et al., 2010). Due to the contribution of
energy systems to greenhouse gas emissions (Edenhofer et al.,
2014), a primary driver of energy policy is identification of dec-
arbonisation strategies, as reflected in international and regional
policy (European Union, 2009; UK Parliament, 2008; UNFCCC,
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1998).
A range of technological and policy options for decarbonisation

exist (Chu and Majumdar, 2012; Committee on Climate Change,
2013; Ekins et al., 2013) that broadly fall into five categories:
(1) use of mature technologies as a bridge in the short to medium
term; (2) increased energy efficiency across society; (3) increased
reliance on renewable technologies; (4) refinement of existing
energy systems; and (5) deployment of new technologies such as
carbon dioxide capture and storage. To achieve energy dec-
arbonisation targets such options need to be implemented in some
combination rather than singly, resulting in substantial variation
in the range of possible future energy pathways, as demonstrated
through numerous scenario exercises (e.g. Ekins et al., 2013; In-
ternational Energy Agency, 2012). While each option may con-
tribute to decarbonising energy, each is also associated with a
diverse and complex array of social, environmental and economic
impacts occurring at a range of spatial and temporal scales (Gas-
paratos et al., 2011; Hastik et al., 2015; Papathanasopoulou et al.,
2015a).

Outside the energy domain, consideration of sustainability at
local, national and global scales is increasingly framed in terms of
ecosystem services (Daily and Matson, 2008; Gomez-Baggethun
and Ruiz-Perez, 2011). Ecosystem services is used throughout as a
broad term to refer to the benefits that people derive from nature
(Díaz et al., 2015a; Mace et al., 2012). Ecosystem services stem
from the world’s natural ‘capital’, which represents the stock of the
earth’s physical and biological resources (Sukhdev, 2010). When
combined with other forms of capital (Goodwin, 2003), this give
rise to final ecosystem services such as crops, timber and fresh
water that provide goods of value (monetary and non-monetary)
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and contribute to human quality of life. The fact that ecosystem
services are a function of the biophysical environment and the
social and economic context in which provision occurs, means
they represent an ideal metric to inform energy policy (Bateman
et al., 2013; Gasparatos et al., 2011; Hastik et al., 2015; Howard
et al., 2013; Ruckelshaus et al., 2013).

The main objective of this paper is to propose how knowledge
of the influence of energy systems on ecosystem service provision
can be used to inform energy policy. Given the strong parallels that
exist with the Intergovernmental Panel on Climate Change (IPCC),
we frame our discussion within the context of work being un-
dertaken by the Intergovernmental Platform on Biodiversity and
Ecosystem Services (IPBES). The IPBES Conceptual Framework
provides a theoretical model of the interactions between people
and nature, so can help our understanding of the interactions
between energy systems and ecosystem services. The framework
describes the relationships between the natural world and
humanity based on six elements (Fig. 1; Díaz et al., 2015b). De-
velopment of energy policy would be based on understanding of
(i) anthropogenic assets (e.g. energy infrastructure, energy tech-
nology), the (ii) direct (e.g. anthropogenic climate change, pollu-
tion) and (iii) indirect (e.g. energy policy, business interests) dri-
vers of pressures on (iv) nature and (v) the benefits that people
derives from nature that ultimately influence (vi) human quality of
life (roman numerals indicate elements depicted in Fig. 1). The
importance of the IPBES Conceptual Framework is that it specifi-
cally considers both direct drivers of change (e.g. habitat loss as-
sociated a specific energy technology; Fig. 1 element ii) and their
underlying cause (e.g. energy policy; Fig. 1 elements i and iii).
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description of the IPBES Conceptual Framework and its applica-
tion, here we limit our discussion to elements of particular re-
levance in bridging the gap between the energy and ecosystem
services communities. As such, in Section 2 we evaluate current
understanding of the relationship between ecosystem services and
energy systems, and so focus primarily on elements i, ii, iii and v in
Fig. 1. In Section 3 we distil key elements required to assess the
implications of energy technologies for ecosystem services, and in
Section 4 considers how such knowledge could be implemented to
guide energy policy. Ultimately, we argue that incorporation of a
broader set of ecosystem services, beyond climate regulation, into
the design of energy policy is essential to differentiate between
energy technology options and so promote policy that selects the
most sustainable pathways for the future energy system.
2. Current understanding of the interaction between energy
systems and ecosystem services

Currently, evaluation of energy systems typically focuses on a
suite of biophysical measures (Fig. 1 elements ii and iv). For ex-
ample, recent assessments of electricity-generating pathways
(Hertwich et al., 2015; Santoyo-Castelazo and Azapagic, 2014)
compare indicators such as acidification and global warming po-
tential. Such indicators provide a useful comparator to assess en-
ergy systems based on potential impact on ecological processes;
however, they do not capture the spatial context within which the
impacts are occurring, or the ability of the ecological system to
respond. For example, land use change can be used as a proxy for
negative pressures on biodiversity (Santoyo-Castelazo and Aza-
pagic, 2014), favouring energy pathways with smaller spatial
footprints. Such analysis does not incorporate underpinning eco-
logical factors such as patterns of species distribution in relation to
environmental conditions (Bateman et al., 2014; Souza et al.,
2015), the vulnerability or irreplaceability of the area for biodi-
versity (Margules and Pressey, 2000; Turney and Fthenakis, 2011),
or that certain species may benefit from the implied land or
marine transitions (Ashley et al., 2014; Dauber et al., 2010; Hooper
and Austen, 2014; Rowe et al., 2009). This can result in over-
simplification of the true dynamics of the natural system and
implications of energy technologies (Souza et al., 2015).

Beyond environmental considerations, such indicators do not
capture interactions between the biophysical stocks and their va-
lue to, and ability of, society to adapt to changes in ecosystem
service provision (Fig. 1 elements i, iii, v). This is a major issue as
the importance of most ecosystem services is dependent on the
spatial distributions of both their biophysical provision and human
beneficiaries (Fisher et al., 2009; Hein et al., 2006). For example,
changes in habitat structure associated with marine energy (i.e.
tidal barrages, offshore wind) could enhance certain fisheries by
providing species habitat (Hooper and Austen, 2014, 2013), but
will only deliver ecosystem services benefits where fishermen
retain access to exploit the stocks, and where an economic market
for the species exists.

Beyond climate regulation, itself a key service, research at the
interface of energy and ecosystem services has most prominently
focused on impacts on biodiversity (Bergman et al., 2014; Rowe
et al., 2009; Wiens et al., 2011), provisioning services such as food
(Manning et al., 2014; Valentine et al., 2012) and fibre production
(Schulze et al., 2012), regulating services such as soil, water and air
quality (Gaffney and Marley, 2009; Rowe et al., 2009) and erosion
control (Gregg and Izaurralde, 2010), and supporting services such
as soil formation (Cowie et al., 2006; Smith et al., 2014, 2012). A
number of recent studies compare different energy technologies
across habitat types (Bonar et al., 2015; Hastik et al., 2015), and
others have used an ecosystem service framework to examine
contentious energy systems including shale gas (Souther et al.,
2014), bioenergy (Gasparatos et al., 2011; Holland et al., 2015;
Lovett et al., 2015), tidal barrages (Hooper and Austen, 2013), off-
shore wind (Mangi, 2013; Papathanasopoulou et al., 2015a), solar
(Turney and Fthenakis, 2011) and nuclear (Gralla et al., 2014; Pa-
pathanasopoulou et al., 2015a). In all but a few examples, the
consideration of impacts has been limited to one or a few services,
and different metrics have been employed limiting our ability to
make meaningful comparisons between energy systems and
studies.

More fundamentally, many authors (Bonar et al., 2015; Lovett
et al., 2015; Turney and Fthenakis, 2011) highlight significant gaps
in understanding of interactions between energy systems and
ecosystem services. Papathanasopoulou et al. (2015a, 2015b) pro-
vides one of the few examples where a consistent approach has
been used to compare multiple ecosystem service impacts across
different energy systems. Four main supply options (biomass,
natural gas, nuclear and wind) were evaluated through the con-
struction of impact matrices relating to detailed life cycle ele-
ments, and assessed in relation to local and global impacts on 27
ecosystem services classified using the Common International
Classification of Ecosystem Services (CICES; Haines-Young and
Potschin, 2012). While it was possible to have many lifecycle stage/
ecosystem service interactions, it was rare for the evidence base to
encompass more than 10% of these. Studies primarily focused on
provisioning or regulating services in the fuel cycle or operational
stages. Downstream ecosystem service consequences were rarely
covered, primarily due to limited experience of decommissioning
upon which such evaluations could be based. Lastly, although
there are a priori reasons for anticipating that upstream impacts
associated with the mining and processing of raw materials for
construction activities would be important for all energy systems,
such impacts were rarely considered.
3. Key elements for integration of ecosystem services within
energy systems assessment

From the studies highlighted in the previous section, it is
possible to distil key elements that are required when assessing
the implications of energy system for ecosystem services (Fig. 2).
Firstly, assessment must include consideration of a broad range of
ecosystem services to properly account for impacts. This should be
undertaken using a consistent framework that ensures compar-
ability between technologies, and that the full range of both
market (e.g. crops, timber) and non-market (e.g. cultural value,
recreation) ecosystem services are considered (Bateman et al.,
2011). CICES (Haines-Young and Potschin, 2012) represents a
candidate classification framework as it has been developed to
support work on environmental accounting within the European
Union and the United Nations Statistical Division (European
Commission et al., 2013)

Secondly, analysis must consider the ecosystem service im-
plications across all stages of the life cycle of energy systems. An
extensive review of life cycle assessments of energy systems from
a carbon perspective identifies reliance of renewable energy
technologies on existing fossil fuel infrastructure for material ex-
traction, fabrication, assembly, delivery and so forth (Edenhofer
et al., 2014, 2011). This suggests that the implications for ecosys-
tem services of different energy technologies share similarities at
certain stages, from the extraction of raw materials to operation
and decommissioning (Fig. 3). Policy must be based on identifying
and understanding these similarities and critical differences be-
tween energy systems. For example bioenergy and petroleum
production may have different land requirements for the produc-
tion/extraction of the primary energy, but will share similarities in
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terms of infrastructure requirements for conversion and distribu-
tion of secondary energy (Fig. 1 elements i, iii; Fig. 3). Even where
similarities exist, differences can also express themselves in terms
of the spatial extent of impacts (e.g. total land use change) and
through temporal dynamics (e.g. length of time of operation) and
the interaction between the two.

Thirdly, assessment of the desirability of specific energy tech-
nologies must consider mismatches between the temporal and
spatial scales over which ecosystem services and energy systems
operate (Fig. 1 elements ii, iii). The ecological impact of energy
systems tend to manifest at the local level, while energy policy is
designed at the national and global level. For example Allison et al.
(2014) discusses the difficulty in balancing deployment of zero or
low carbon energy technologies to address the long term global
threat to species posed by climate change against more immediate
but localised impacts. Given predictions of loss of biodiversity due
to climate change over the long term, policy might choose loca-
lised near term negative impacts as a mechanism to secure long
term survival of species. By contrast, in certain systems impacts of
climate change are predicted to be a less significant driver of loss
of species and ecosystem function than current anthropogenic
threats (Kuemmerlen et al., 2015; Tedesco et al., 2013), such that
energy policy might be more weighted towards ameliorating near
term local impacts. Understanding such spatial and temporal dy-
namics is key to identifying the most desirable energy options,
balancing both short and long term and both local and global
considerations.

Finally, assessment must consider both the territorial and in-
ternational dimensions of energy systems. Analysis focussed on
greenhouse gas emissions (Barrett et al., 2013; Hertwich and Pe-
ters, 2009; Peters et al., 2011) demonstrates that an increase in the
volume and structure of international trade in recent decades has
resulted in a transfer of net emissions from developed (consumer)
nations to less developed (producer) nations (Peters et al., 2011).
This indicates that the apparent success of industrialised countries
in decreasing domestic emissions has been offset by an increase in
emissions embodied in imports (Kanemoto et al., 2014). Using si-
milar analytical approaches, whole economy studies demonstrate
that consumption and globalisation are putting pressure on water
resources (Holland et al., 2015; Lenzen et al., 2013), land-use
(Weinzettel et al., 2013; Yu et al., 2013), material use (Wiedmann
et al., 2015) and biodiversity (Lenzen et al., 2012) globally. Such
“telecoupling” (Liu et al., 2013) of natural and human system must
be incorporated into assessments of energy systems to fully un-
derstand the implications of energy technologies, and ascertain
whether certain options generate an ecological deficit (Kroll et al.,
2012) in regions separate from where final demand for energy
resides and which may lack the adaptive capacity to cope with loss
of ecosystem services. For example Holland et al. (2015) developed
a methodology to trace localised freshwater consumption result-
ing from global energy supply chains, and to start to understand
where the associated freshwater consumption was detrimental to
the livelihoods of the local population. This can reduce the risk of
selecting energy pathways associated with drought prone and
water-vulnerable areas. Accounting for such displaced impacts
remains a difficult problem. Its resolution is central to the para-
digm shift that is required for appropriate consideration of a wide
range of ecosystem services and how they are linked to the in-
ternational trade of technologies, products and services that un-
derpin the delivery of global energy supplies.
4. Implementing an ecosystem services framework in energy
policy decisions

The challenges to implementing an ecosystem service
assessment framework in an energy policy context are consider-
able and fall into two distinct categories; methodological and in-
stitutional. Many of the methodological challenges are not unique
to the energy sector and include well-documented issues of sparse
data for many ecosystem services and their valuation (Naidoo
et al., 2008; Ruckelshaus et al., 2013). Initiatives such as The Eco-
nomics of Ecosystems and Biodiversity (Sukhdev, 2010) make a
strong case for incorporating the economic value of the full range
of ecosystem services within the decision making process. How-
ever, designing policy based on valuation of the broad range of
ecosystem services has its difficulties, particularly in creating
meaningful valuations and comparisons of market and non-mar-
ket goods, the provision of which may change through time (Ba-
teman et al., 2013, 2011). A particular challenge is identifying the
different societal groups that may benefit from different ecosys-
tem services, as values are qualitative and context-specific, and
winners and losers may be unevenly distributed across space, time
and different stakeholder groups (Fig. 1 element vi; Brooks et al.,
2014). In addition to these well-documented difficulties, quanti-
fying the ecosystem service impacts of energy technologies must
be disaggregated according to the components of their life cycle
(Fig. 3).

A major institutional challenge to fully incorporating ecosystem
services into energy policy is identified by Pittock (2011) who
notes conflation of energy and climate policy, with discussion
around energy currently incorporating information about only a
few (predominantly regulating and provisioning) services. There is
fragmentation across the policy landscape with climate and en-
ergy often considered by bodies separate from those that are re-
levant for other environmental considerations. For example, stat-
utory bodies in UK exhibit such a division (i.e. Dept. of Energy and
Climate Change, Dept. of Environment, Food and Rural Affairs), as
do organisations collating evidence at the international level (IPCC,
IPBES).

Fragmentation of the policy landscape may express itself most
visibly in tensions that exist between environmental and energy
policy. A prominent example of this is provided in relation to
biofuels (Gasparatos et al., 2011; Mohr and Raman, 2013; van der
Horst and Vermeylen, 2011) which have been promoted as a me-
chanism for energy security and independence, and reducing
greenhouse gas emissions from the transport sector. Critics have
identified a number of unintended consequences associated with
broader sustainability ideals in relation to some production prac-
tices of first-generation feedstocks. For example, the release of
carbon from land-use change (Fargione et al., 2008; Searchinger
et al., 2008; Smith and Searchinger, 2012), increasing pressure on
land and water resources (De Fraiture et al., 2008), and economic
pressures that may have contributed to food insecurity for vul-
nerable populations (Phalan, 2009; Pimentel et al., 2009). As un-
derstanding has developed, analyses considering environmental
(Manning et al., 2014; Rowe et al., 2009), social (van der Horst and
Vermeylen, 2011) and economic (Bauen et al., 2010) aspects of
biofuel production has emerged that provides a more nuanced
understanding of biofuel pathways. This has identified more sus-
tainable biofuel options such as the use of non-food crops, grown
on land unsuitable for food production (Gelfand et al., 2013; Lovett
et al., 2014; Valentine et al., 2012). Despite the biofuel industry
being represented by a diverse range of technologies, feedstock
types and production methods that could deliver positive out-
comes for the environment and society, historic controversy aris-
ing through failure to consider wider environmental and social
considerations has led to policy uncertainty, reduced levels of in-
vestment and slowed uptake of advanced feedstocks (Berti and
Levidow, 2014; Boucher, 2012).

Such controversy speaks to a wider point about public ac-
ceptability (Fig. 1 element iii), an important influence on
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acceptance of energy policy (Devine-Wright, 2005; Ekins, 2004;
Parkhill et al., 2013; Walker et al., 2007). In the UK people tend to
be largely supportive of renewable energy technologies and there
is evidence that the public wants and expects change in how en-
ergy is supplied, used and governed (Parkhill et al., 2013). Yet there
has been widespread local opposition towards some renewable
energy developments (particularly wind and biomass) due to
concerns about impacts at the local level, such as the environ-
mental and aesthetic impacts of land use change and distributive
injustice (Devine-Wright, 2005; Gross, 2007; Upham and Shackley,
2006; Walker et al., 2010; Wüstenhagen et al., 2007). Integrating
ecosystem services into local energy planning processes could al-
low informed decisions as to the trade-offs that different stake-
holder groups are willing to accept, and the kinds of benefits they
consider most important (Börger et al., 2014a, 2014b; Hooper et al.,
2014; Howard et al., 2013) taking into account the longer term
dynamics of the environment under climate change. Combined
with spatial targeting, such a strategy could help to identify de-
ployment strategies with likely positive outcomes, potentially
bolstering the reputation of energy technologies.

A key requirement for uptake of an ecosystem service based
framework for analysing energy systems will be to convince the
private sector of the feasibility of such an approach. Meeting this
challenge will require incorporating emerging partnerships and ap-
proaches being developed by ecosystem service researchers in fields
ranging from climate change mitigation (e.g. Bateman et al., 2015), to
those working on embedding such an approach within standard
corporate accounting (Kareiva et al., 2015). A significant first step
toward integration of ecosystem services within energy policy could
be through scenario exercises. These are used globally as a basis for
policy, planning and investment decisions by government and in-
dustry. For example, future energy scenarios have been developed by
the UK government within their Renewable Energy Road Map
(Department of Energy and Climate Change, 2011) and by The
Committee on Climate Change (2015) in its carbon budgets, and
there are a number of notable global examples including the World
Energy Outlook (International Energy Agency, 2015) and the New
Lens Scenarios (Royal Dutch Shell, 2013). Globally, the IEA have taken
an initial step towards integrating water resources (International
Energy Agency, 2012) into consideration of future scenarios, ac-
knowledging the role of water as a critical factor affecting energy
systems. For governments and businesses, information on ecosystem
service implications of energy pathways would provide policy-
relevant insights for future planning. Within scenarios, projected
changes in ecosystem service provision under contrasting energy
pathways would allow consideration of the implications of differing
plausible technological, economic and social pathways, and form a
central part of the exploration of which options are most desirable.
As energy systems become increasingly geared towards dec-
arbonisation, implications of different energy options for ecosystem
services beyond climate regulation will represent a key factor that
differentiates between pathways, and thus the desirability of specific
policy options.

While acknowledging the challenges, integration of ecosystem
services into energy policy presents opportunities for informing
governments, industry, third sector organisations and individual
consumers. Climate regulation, which is more advanced in policy
making than ecosystem services, has become increasingly evident
in stakeholder decision making. However, this has been supported
by government departments dedicated to energy and climate
policy and a legal framework founded on carbon, renewable en-
ergy and energy efficiency targets. There are standardised meth-
ods to account for carbon emissions, both within and outside na-
tional borders, and mandatory emissions reporting globally. Even
so, climate policy has yet to become widespread across all actors.
By drawing on advancements in climate regulation, enhancing
interactions between the energy and ecosystem service commu-
nities could identify desirable energy pathways that align national
and international obligations for both decarbonisation (Edenhofer
et al., 2014) and halting the loss of biodiversity and degradation of
ecosystem services (Convention on Biological Diversity, 2012).
5. Conclusions and policy implications

Concurrent with development of tools and policy to examine
and address climate change there is a growing understanding and
ability to assess the provision and importance of ecosystem ser-
vices for human well-being. The bridging of these two domains is
central to achieving a secure and sustainable future. The IPBES
Conceptual Framework (Fig. 1), provides a unifying structure
within which this can be achieved. In this paper we have high-
lighted some of the key elements that are essential to, and which
could arise from, such an integrated assessment. Consideration of
ecosystem services within an energy context clarifies the full
consequences of a given energy system or pathway, enabling the
benefits and costs in social, economic and environmental terms to
be objectively assessed and transparently presented, and thus
contribute to the development of informed energy policy.

Threats to ecosystem services represent a key impact of climate
change identified by the IPCC (2014) and the Millennium Ecosystem
Assessment (2005). Given the contribution of energy systems to
greenhouse gas emissions, identifying pathways that reduce emissions
is critical for the maintenance of ecosystem services on which
humanity depends. Formal establishment of the interaction between
energy systems and ecosystem services in governance processes is
required so that both are enshrined in the relevant policy and man-
agement practices to address both near term (e.g. land/sea use, over-
exploitation) and future (e.g. climate change) threats. To enable deci-
sion makers to analyse which energy pathways are most beneficial to
society, assessment methods need to be developed that consider the
ecosystem service impacts of large-scale shifts to a low carbon energy
infrastructure within a consistent framework allowing cross compar-
ison between options.

Substantial research challenges remain for practitioners. These
include: (1) Static life cycle analyses of individual energy systems
that often focus on a handful of environmental impacts without
tracing the implications for provision of ecosystem services on which
society depends; (2) Energy system models that generally say
nothing about impacts to ecosystem services beyond greenhouse gas
emissions nor outside the focal country; (3) Increasing displacement
of production from the point of consumption with little current un-
derstanding of the connection between the location of impact with
the energy demand driving it, making reliable assessment of the
impact energy demand has on distant communities competing for
natural resources near impossible; (4) Achieving macro-level analysis
of global energy systems while maintaining a high spatial resolution
relevant for most ecosystem services; and (5) integrating research
from a number of disciplines such as ecology, energy modelling,
vulnerability and adaptation. Despite such challenges the research
highlighted here suggests that the elements of such an integrated
assessment are beginning to coalesce and can provide the holistic
view of energy and ecosystem services interactions that is required to
inform the future of global energy policy.
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