84 research outputs found

    Neuromelanin organelles are specialized autolysosomes that accumulate undegraded proteins and lipids in aging human brain and are likely involved in Parkinson's disease

    Get PDF
    During aging, neuronal organelles filled with neuromelanin (a dark-brown pigment) and lipid bodies accumulate in the brain, particularly in the substantia nigra, a region targeted in Parkinson's disease. We have investigated protein and lipid systems involved in the formation of these organelles and in the synthesis of the neuromelanin of human substantia nigra. Membrane and matrix proteins characteristic of lysosomes were found in neuromelanin-containing organelles at a lower number than in typical lysosomes, indicating a reduced enzymatic activity and likely impaired capacity for lysosomal and autophagosomal fusion. The presence of proteins involved in lipid transport may explain the accumulation of lipid bodies in the organelle and the lipid component in neuromelanin structure. The major lipids observed in lipid bodies of the organelle are dolichols with lower amounts of other lipids. Proteins of aggregation and degradation pathways were present, suggesting a role for accumulation by this organelle when the ubiquitin-proteasome system is inadequate. The presence of proteins associated with aging and storage diseases may reflect impaired autophagic degradation or impaired function of lysosomal enzymes. The identification of typical autophagy proteins and double membranes demonstrates the organelle's autophagic nature and indicates that it has engulfed neuromelanin precursors from the cytosol. Based on these data, it appears that the neuromelanin-containing organelle has a very slow turnover during the life of a neuron and represents an intracellular compartment of final destination for numerous molecules not degraded by other systems

    Study of the lineshape of the chi(c1) (3872) state

    Get PDF
    A study of the lineshape of the chi(c1) (3872) state is made using a data sample corresponding to an integrated luminosity of 3 fb(-1) collected in pp collisions at center-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate chi(c1)(3872) and psi(2S) mesons from b-hadron decays are selected in the J/psi pi(+)pi(-) decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the chi(c1 )(3872) and psi(2S) states, Delta m, and the width of the chi(c1 )(3872) state, Gamma(Bw), are determined to be (Delta m=185.598 +/- 0.067 +/- 0.068 Mev,)(Gamma BW=1.39 +/- 0.24 +/- 0.10 Mev,) where the first uncertainty is statistical and the second systematic. Using a Flatte-inspired model, the mode and full width at half maximum of the lineshape are determined to be (mode=3871.69+0.00+0.05 MeV.)(FWHM=0.22-0.04+0.13+0.07+0.11-0.06-0.13 MeV, ) An investigation of the analytic structure of the Flatte amplitude reveals a pole structure, which is compatible with a quasibound D-0(D) over bar*(0) state but a quasivirtual state is still allowed at the level of 2 standard deviations

    Measurement of the CKM angle γγ in B±→DK±B^\pm\to D K^\pm and B±→Dπ±B^\pm \to D π^\pm decays with D→KS0h+h−D \to K_\mathrm S^0 h^+ h^-

    Get PDF
    A measurement of CPCP-violating observables is performed using the decays B±→DK±B^\pm\to D K^\pm and B±→Dπ±B^\pm\to D \pi^\pm, where the DD meson is reconstructed in one of the self-conjugate three-body final states KSπ+π−K_{\mathrm S}\pi^+\pi^- and KSK+K−K_{\mathrm S}K^+K^- (commonly denoted KSh+h−K_{\mathrm S} h^+h^-). The decays are analysed in bins of the DD-decay phase space, leading to a measurement that is independent of the modelling of the DD-decay amplitude. The observables are interpreted in terms of the CKM angle Îł\gamma. Using a data sample corresponding to an integrated luminosity of 9 fb−19\,\text{fb}^{-1} collected in proton-proton collisions at centre-of-mass energies of 77, 88, and 13 TeV13\,\text{TeV} with the LHCb experiment, Îł\gamma is measured to be (68.7−5.1+5.2)∘\left(68.7^{+5.2}_{-5.1}\right)^\circ. The hadronic parameters rBDKr_B^{DK}, rBDπr_B^{D\pi}, ÎŽBDK\delta_B^{DK}, and ÎŽBDπ\delta_B^{D\pi}, which are the ratios and strong-phase differences of the suppressed and favoured B±B^\pm decays, are also reported

    Measurement of CP asymmetries and branching fraction ratios of B− decays to two charm mesons

    Get PDF
    The CPCP asymmetries of seven B−B^- decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9fb−19\text{fb}^{-1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D∗0D^{*0} or Ds∗−D^{*-}_s meson are analysed by reconstructing only the D0D^0 or Ds−D^-_s decay products. This paper presents the first measurement of ACP(B−→Ds∗−D0)\mathcal{A}^{CP}(B^- \rightarrow D^{*-}_s D^0) and ACP(B−→Ds−D∗0)\mathcal{A}^{CP}(B^- \rightarrow D^{-}_s D^{*0}), and the most precise measurement of the other five CPCP asymmetries. There is no evidence of CPCP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured.The CP asymmetries of seven B−^{−} decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9 fb−1^{−1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D∗0^{*0} or Ds∗− {D}_s^{\ast -} meson are analysed by reconstructing only the D0^{0} or Ds− {D}_s^{-} decay products. This paper presents the first measurement of ACP \mathcal{A} ^{CP}(B−^{−}→Ds∗− {D}_s^{\ast -} D0^{0}) and ACP \mathcal{A} ^{CP}(B−^{−}→Ds− {D}_s^{-} D∗0^{∗0}), and the most precise measurement of the other five CP asymmetries. There is no evidence of CP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured.[graphic not available: see fulltext]The CPCP asymmetries of seven B−B^- decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9 fb−19\text{ fb}^{-1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D∗0D^{*0} or Ds∗−D^{*-}_s meson are analysed by reconstructing only the D0D^0 or Ds−D^-_s decay products. This paper presents the first measurement of ACP(B−→Ds∗−D0)\mathcal{A}^{CP}(B^- \rightarrow D^{*-}_s D^0) and ACP(B−→Ds−D∗0)\mathcal{A}^{CP}(B^- \rightarrow D^{-}_s D^{*0}), and the most precise measurement of the other five CPCP asymmetries. There is no evidence of CPCP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured

    The LHCb upgrade I

    Get PDF
    The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software

    The expression of Axl receptor tyrosine kinase influences the tumour phenotype and clinical outcome of patients with malignant pleural mesothelioma

    No full text
    BACKGROUND: Recent preclinical studies identified Axl, a tyrosine kinase receptor implicated in tumour progression and epithelial-to-mesenchymal transition, as a putative therapeutic target in malignant pleural mesothelioma (MPM), an invariably fatal malignancy with limited treatment options. Here, we studied the expression of Axl and its ligand Gas-6 (growth arrest signal-6) in primary specimens of MPM, correlating their expression levels with tumour phenotype and clinical outcomes. METHODS: Two independent cohorts of consecutive patients diagnosed with MPM were studied: a derivation cohort composed of 63 cases and a validation set of 35 cases. Clinical variables including patients' demographics, tumour stage, histotype, performance status (PS), Axl and Gas-6 staining were tested for predicting overall survival (OS) using univariate and multivariate analyses. RESULTS: In the derivation cohort, Axl (P=0.001) but not Gas-6 overexpression (P=0.35) emerged as a univariate prognostic factor for OS, together with stage (P=0.05), PS (P<0.001) hypoalbuminaemia (P<0.001) and anaemia (P<0.001). Multivariate analyses confirmed Axl overexpression (P=0.01), PS (P=0.01), hypoalbuminaemia (P<0.001) and anaemia (P=0.04) as independent predictors of OS. The prognostic role of Axl overexpression was externally validated in an independent cohort (P=0.03). CONCLUSION: Overexpression of Axl is found in the majority of MPM specimens and influences patient's survival independently from other established prognostic factors. Such information may support patient selection for future trials

    A Synthetic Protocell‐Based Heparin Scavenger

    No full text
    Heparin is a commonly applied blood anticoagulant agent in clinical use. After treatment, excess heparin needs to be removed to circumvent side effects and recover the blood-clotting cascade. Most existing heparin antidotes rely on direct heparin binding and complexation, yet selective compartmentalization and sequestration of heparin would be beneficial for safety and efficiency. However, such systems have remained elusive. Herein, a semipermeable protein-based microcompartment (proteinosome) is loaded with a highly positively charged chitosan derivative, which can induce electrostatics-driven internalization of anionic guest molecules inside the compartment. Chitosan-loaded proteinosomes are subsequently employed to capture heparin, and an excellent heparin-scavenging performance is demonstrated under physiologically relevant conditions. Both the highly positive scavenger and the polyelectrolyte complex are confined and shielded by the protein compartment in a time-dependent manner. Moreover, selective heparin-scavenging behavior over serum albumin is realized through adjusting the localized scavenger or surrounding salt concentrations at application-relevant circumstances. In vitro studies reveal that the cytotoxicity of the cationic scavenger and the produced polyelectrolyte complex is reduced by protocell shielding. Therefore, the proteinosome-based systems may present a novel polyelectrolyte-scavenging method for biomedical applications

    A Synthetic Protocell-Based Heparin Scavenger

    Get PDF
    | openaire: EC/H2020/101002258/EU//ProCrystalHeparin is a commonly applied blood anticoagulant agent in clinical use. After treatment, excess heparin needs to be removed to circumvent side effects and recover the blood-clotting cascade. Most existing heparin antidotes rely on direct heparin binding and complexation, yet selective compartmentalization and sequestration of heparin would be beneficial for safety and efficiency. However, such systems have remained elusive. Herein, a semipermeable protein-based microcompartment (proteinosome) is loaded with a highly positively charged chitosan derivative, which can induce electrostatics-driven internalization of anionic guest molecules inside the compartment. Chitosan-loaded proteinosomes are subsequently employed to capture heparin, and an excellent heparin-scavenging performance is demonstrated under physiologically relevant conditions. Both the highly positive scavenger and the polyelectrolyte complex are confined and shielded by the protein compartment in a time-dependent manner. Moreover, selective heparin-scavenging behavior over serum albumin is realized through adjusting the localized scavenger or surrounding salt concentrations at application-relevant circumstances. In vitro studies reveal that the cytotoxicity of the cationic scavenger and the produced polyelectrolyte complex is reduced by protocell shielding. Therefore, the proteinosome-based systems may present a novel polyelectrolyte-scavenging method for biomedical applications.Peer reviewe
    • 

    corecore