1,170 research outputs found
Quantum Non-Equilibrium Steady States Induced by Repeated Interactions
We study the steady state of a finite XX chain coupled at its boundaries to
quantum reservoirs made of free spins that interact one after the other with
the chain. The two-point correlations are calculated exactly and it is shown
that the steady state is completely characterized by the magnetization profile
and the associated current. Except at the boundary sites, the magnetization is
given by the average of the reservoirs' magnetizations. The steady state
current, proportional to the difference in the reservoirs' magnetizations,
shows a non-monotonous behavior with respect to the system-reservoir coupling
strength, with an optimal current state for a finite value of the coupling.
Moreover, we show that the steady state can be described by a generalized Gibbs
state.Comment: to appear in Phys. Rev. Let
CO2 content beneath northern Iceland and the variability of mantle carbon
Primitive basalt melt inclusions from Borgarhraun, northern Iceland, display large correlated variations in CO2 and non-volatile incompatible trace elements (ITEs) such as Nb, Th, Rb, and Ba. The average CO2/ITE ratios of the Borgarhraun melt inclusion population are precisely determined (e.g., CO2/Nb = 391 ± 16; 2M, n = 161). These data, along with published data on five other populations of undegassed MORB glasses and melt inclusions, demonstrate that upper mantle CO2/Ba and CO2/Rb are nearly homogenous, while CO2/Nb and CO2/Th are broadly correlated with long-term indices of mantle heterogeneity reflected in Nd isotopes (143Nd/144Nd) in five out of the six regions of the upper mantle examined thus far. Our results suggest that heterogeneous carbon contents of the upper mantle are long-lived features, and that average carbon abundances of the mantle sources of Atlantic mid-ocean ridge basalts (MORB) are higher by a factor of two than those of Pacific MORB. This observation is correlated with a similar distinction in water contents (Michael, 1995) and trace elements characteristic of subduction fluids (Ba, Rb; Arevalo and McDonough, 2010). We suggest that the upper mantle beneath the younger Atlantic Ocean basin contains components of hydrated and carbonated subduction-modified mantle from prior episodes of Iapetus subduction that were entrained and mixed into the upper mantle during opening of the Atlantic Ocean basin.Maclennan is supported by Natural Environment Research Council grant NE/M000427/1. This research was supported by the Carnegie Institution of Washington and is a contribution to the Deep Carbon Observatory
CO2 content beneath northern Iceland and the variability of mantle carbon
Primitive basalt melt inclusions from Borgarhraun, northern Iceland, display large correlated variations in CO2 and nonvolatile incompatible trace elements (ITEs) such as Nb, Th, Rb, and Ba. The average CO2/ITE ratios of the Borgarhraun melt inclusion population are precisely determined (e.g., CO2/Nb = 391 ± 16; 2σM [two standard errors of the mean], n = 161). These data, along with published data on five other populations of undegassed mid-oceanic ridge basalt (MORB) glasses and melt inclusions, demonstrate that upper mantle CO2/Ba and CO2/Rb are nearly homogeneous, while CO2/Nb and CO2/Th are broadly correlated with long-term indices of mantle heterogeneity reflected in Nd isotopes (143Nd/144Nd) in five of the six regions of the upper mantle examined thus far. Our results suggest that heterogeneous carbon contents of the upper mantle are long-lived features, and that average carbon abundances of the mantle sources of Atlantic MORB are higher by a factor of two than those of Pacific MORB. This observation is correlated with a similar distinction in water contents and trace elements characteristic of subduction fluids (Ba, Rb). We suggest that the upper mantle beneath the younger Atlantic Ocean basin contains components of hydrated and carbonated subduction-modified mantle from prior episodes of Iapetus subduction that were entrained and mixed into the upper mantle during opening of the Atlantic Ocean basin
Intravenous sodium nitrite in acute ST-elevation myocardial infarction: a randomized controlled trial (NIAMI).
AIM: Despite prompt revascularization of acute myocardial infarction (AMI), substantial myocardial injury may occur, in part a consequence of ischaemia reperfusion injury (IRI). There has been considerable interest in therapies that may reduce IRI. In experimental models of AMI, sodium nitrite substantially reduces IRI. In this double-blind randomized placebo controlled parallel-group trial, we investigated the effects of sodium nitrite administered immediately prior to reperfusion in patients with acute ST-elevation myocardial infarction (STEMI).
METHODS AND RESULTS: A total of 229 patients presenting with acute STEMI were randomized to receive either an i.v. infusion of 70 μmol sodium nitrite (n = 118) or matching placebo (n = 111) over 5 min immediately before primary percutaneous intervention (PPCI). Patients underwent cardiac magnetic resonance imaging (CMR) at 6-8 days and at 6 months and serial blood sampling was performed over 72 h for the measurement of plasma creatine kinase (CK) and Troponin I. Myocardial infarct size (extent of late gadolinium enhancement at 6-8 days by CMR-the primary endpoint) did not differ between nitrite and placebo groups after adjustment for area at risk, diabetes status, and centre (effect size -0.7% 95% CI: -2.2%, +0.7%; P = 0.34). There were no significant differences in any of the secondary endpoints, including plasma troponin I and CK area under the curve, left ventricular volumes (LV), and ejection fraction (EF) measured at 6-8 days and at 6 months and final infarct size (FIS) measured at 6 months.
CONCLUSIONS: Sodium nitrite administered intravenously immediately prior to reperfusion in patients with acute STEMI does not reduce infarct size
Front propagation into unstable and metastable states in Smectic C* liquid crystals: linear and nonlinear marginal stability analysis
We discuss the front propagation in ferroelectric chiral smectics (SmC*)
subjected to electric and magnetic fields applied parallel to smectic layers.
The reversal of the electric field induces the motion of domain walls or fronts
that propagate into either an unstable or a metastable state. In both regimes,
the front velocity is calculated exactly. Depending on the field, the speed of
a front propagating into the unstable state is given either by the so-called
linear marginal stability velocity or by the nonlinear marginal stability
expression. The cross-over between these two regimes can be tuned by a magnetic
field. The influence of initial conditions on the velocity selection problem
can also be studied in such experiments. SmC therefore offers a unique
opportunity to study different aspects of front propagation in an experimental
system
Field alignment of bent-core smectic liquid crystals for analog optical phase modulation
A general method for aligning bent-core smectic liquid crystal materials is described. Alternating electric fields between interdigitated electrodes patterned on one cell surface create torques on the liquid crystal that result in uniform "bookshelf" orientation of the smectic layers. The aligned cell can then be driven in the conventional way by applying an electric field between all of the stripe electrodes connected together and a monolithic electrode on the other cell surface. Fast, analog, optical phase-only modulation is demonstrated in a device containing a polar, bent-core SmAPF material aligned using this technique
Els conflictes a les hores de patis i menjadors escolars
The role of antigen expression by thymomas in myasthenia gravis (MG) is not clear. Previous reports of acetylcholine receptor (AChR) mRNA expression by the highly sensitive reverse transcription-polymerase chain reactions (RT-PCR) produced varying results. To try to clarify this issue, we first used RT-PCR but then turned to the more accurate and quantitative RNase protection assays (RPA) to assess AChR subunit mRNA expression in thymomas from 25 patients (22 with MG). By RT-PCR, all five AChR subunits could be detected in many thymomas. However, by RPA, the mRNA for the adult-specific AChR epsilon-subunit was found in 13/25 (52%) thymomas, but not mRNA for the other subunits. AChR epsilon-subunit was more frequently detected in thymomas of A or AB histology (WHO classification) than those with B1-B3 histology. Overall, 6/6 with thymomas of A or AB histology were positive compared with only 8/19 with B histology (p=0.02). Autoantibodies in the two patients with the highest levels of epsilon-subunit mRNA bound better to adult (alpha(2)betadeltaepsilon) AChR than to fetal (alpha(2)betadeltagamma) AChR, whereas the other sera bound better to fetal AChR. The greater abundance of mRNA for AChR epsilon-subunit than for other subunits suggests that the AChR epsilon-subunit may play a distinctive role in autosensitization in MG-associated thymomas, particularly those of type A or AB
Ring-Pattern Dynamics in Smectic-C* and Smectic-C_A* Freely Suspended Liquid Crystal Films
Ring patterns of concentric 2pi-solitons in molecular orientation, form in
freely suspended chiral smectic-C films in response to an in-plane rotating
electric field. We present measurements of the zero-field relaxation of ring
patterns and of the driven dynamics of ring formation under conditions of
synchronous winding, and a simple model which enables their quantitative
description in low polarization DOBAMBC. In smectic C_A* TFMHPOBC we observe an
odd-even layer number effect, with odd number layer films exhibiting order of
magnitude slower relaxation rates than even layer films. We show that this rate
difference is due to much larger spontaneous polarization in odd number layer
films.Comment: 4 RevTeX pgs, 4 eps figures, submitted to Phys. Rev. Let
- …