
PHYSICAL REVIEW E VOLUME 52, NUMBER 2 AUGUST 1995

Front propagation into unstable and metastable states in smectic-C liquid crystals:
Linear and nonlinear marginal-stability analysis
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We discuss the front propagation in ferroelectric chiral smectic liquid crystals (Sm-C') subjected
to electric and magnetic fields that are applied parallel to smectic layers. The reversal of the
electric field induces the motion of domain walls or fronts that propagate into either an unstable
or a metastable state. In both regimes, the front velocity is calculated exactly. Depending on the
field, the speed of a front propagating into the unstable state is given either by the so-called linear
marginal-stability velocity or by the nonlinear marginal-stability expression. The crossover between
these two regimes can be tuned by a magnetic Geld. The inQuence of initial conditions on the
velocity selection problem can also be studied in such experiments. Sm-C* therefore offers a unique
opportunity to study different aspects of front propagation in an experimental system.

PACS number(s): 61.30.Gd, 03.40.Kf, 75.60.Ch

In the ferroelectric smectic liquid crystal (Sm-C*), the
polarization vector, perpendicular to the director and
parallel to smectic layers, forms a helicoidal structure
with the characteristic pitch (wavelength) of the order of
micrometers. The director is tilted with respect to layers
and precesses together with the local polarization about
the axis perpendicular to the layers [1]. These systems
are not only interesting from a scientific but also from a
practical point of view [2], since they can be used as fast
electro-optical switches. As noted in 1983 by Cladis et
aL [3], for sufFiciently large electric fields a description in
terms of domains where the polarization is parallel to the
field, separated by the domain walls, becomes appropri-
ate. Inside the wall the director makes the full 27r twist
and thus is in the unfavorable configuration relative to
the electric field; see Fig. 1(a). The size of a domain
is proportional to the pitch. When the field is reversed
each wall splits into two domain walls that propagate in
opposite directions into the domains where the director
is pointing in the unfavorable direction; see Fig. 1(b).
The reversal of the polarization is thus mediated by the
propagation of domain walls or fronts, so that the switch-
ing time is proportional to the domain size and inversely
proportional to the speed of the wall.

Inspired by the similarity in appearance of the dy-
namical equation for domain wall motion with the sine-
Gordon equation, Cladis et al. [3] drew the analogy of
this switching behavior with the motion of solitons. Soon
thereafter, however, Maclennan et al. [4] pointed out that
since viscous effects are much larger than inertial effects
in liquid. crystals, the wall motion should actually be
thought of as an example of front propagation into an
unstable state. They then applied some results from the
theory of front propagation into an unstable state [5] to
the case in which the dielectric term can be neglected.
In addition, they studied numerically how large the fields
have to be for the domain wall picture to become appli-

cable and investigated the influence of dielectric [6] and
backflow [7] efFects.

Since the work of Maclennan et al. [4], the theory of
front propagation into unstable states has been further
developed [8—16]. In general, we know that there can ex-
ist two different types of regimes, which are often referred
to as linear and nonlinear marginal stability [10,11]. In
the linear marginal-stability regime, the front speed v*

can be calculated explicitly from the dispersion relation
of the unstable modes describing the dynamics of lin-

ear perturbations around the unstable state. Nonlinear
marginal stability, on the other hand, refers to a regime
in which the front speed. vt is larger than v* and depends
on the fully nonlinear behavior of the equation. As a
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FIG. l. (a) Stable stationary state of Eq. (4) for posi-
tive E, showing domains, where P = 0, +2s', ..., separated by
domain walls where P makes a rapid twist of 2s. (b) After
R is reversed, the P = 0, +2vr, . . . domains are invaded by

P = +7r, . . . states, as indicated by the arrows. The curves
marked 1, 2, and 3 show the initial state at t = 0 and two
subsequent states after the reversal of E.
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result, explicit calculations showing the presence of the
nonlinear marginal stability regime are available only for
a few equations [9,11—16].

It is the purpose of this paper to show that the above
realization of domain wall or front propagation in Sm-C*
liquid crystals provides an extremely interesting physical
example of front propagation into unstable or metastable
states.

(i) We show that an exact solution of the equation
describing twist dynamics in Sm-C*, found by Cladis [17]
and independently by others [18], is exactly the nonlinear
front solution [12] that determines the velocity vt in soine
parameter ranges.

(ii) So far nonlinear marginal stability has been es-
tablished only for equations with polynomial nonlinear-
ities [9,11—13,15]. Our analysis is done explicitly for an
equation with nonpolynomial nonlinearities. Moreover,
our results are a nice illustration of the observation [11]
that nonlinear marginal stability often occurs near points
where a crossover to front propagation into a metastable
state occurs.

(iii) To our knowledge, front propagation in Sm-C liq-
uid crystals is the first physically realistic system where
the crossover from linear to nonlinear marginal stability
appears accessible in experiments of the type of those
performed by Cladis et aL [3].

(iv) If detailed experiments of the type indicated under
(iii) are feasible, these experiments will also be ones in
which the possibility arises to obtain front speeds larger
than v by preparing special initial conditions [5,9—11].

Let us consider a ferroelectric, chiral smectic system
subjected to an electric Beld E and a magnetic Geld H
parallel to the smectic layers and perpendicular to each
other (as discussed later, the case with II parallel to E
can be accounted for by a change in sign in y ). The
electric and the magnetic energy density of the system is
then given by [19,20]

If we take E positive and H fixed, then for E~ ( E (
E2, F has maxima at P = +a, +3vr, . . . and minima at
P = 0, +27r, . . ., as shown in Fig. 2(a). Here the crossover
fields are given by
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where E, = 4vrP/e and H = vrP2/e y Fo.r fields
outside the above range, i.e., for 0 & E ( Ei or E & E2,
there are additional local minima in I", as sketched in
Fig 2(b). Note that the &ee-energy density E is invari-
ant under a reversal of the electrical Beld and change of
P by vr. As a result, when the Geld direction is reversed
(E + E)-in—the case of Fig. 2(a), the global minima at
P = 0, +27r, . . . become maxima, as shown in Fig. 2(c).
For the case of Fig. 2{b), however, the absolute minima
at P = 0, +2w, . . . change into local minima and the local
minima at P = +sr, +3m', . . . change into global minima
of E under Geld reversal; see Fig. 2{d). Suppose we start
with a positive Geld E. As mentioned before, the fully re-
laxed Sm-C* will have large domains where P —0, 2m', . . .,
separated by domain walls where P changes rapidly by
2m. If we now reverse the field, E —+ —E, the states in
these domains become unstable for Ei ( E ( Eq (the
"unstable field range") and metastable for E outside this
range (the "metastable field range"). The stable domain
walls that existed before the field reversal then become

where P is the polarization and P is the azimuthal
angle between the electric Beld and polarization. For
convenience, terms independent of P have been omit-
ted. The anisotropic part of the polarization is given
by the three principal values of the polarization ten-
sor and the tilt angle 0 of the molecules in the smec-
tic layers, i.e. , e =

ezra
—

e~~ sin 0 —eicos 0 [19,20].
For the diamagnetic anisotropy one similarly has y
—y~„+ y~~ sin 0+ y~ cos 0. For simplicity we will con-
centrate on the case that both e and y are positive and
discuss the major differences with the other cases briefly
at the end. The magnetic and dielectric anisotropies are
of course fixed for a given molecule, as they describe how
a molecule prefers to orientate in an external Geld [19].
There are therefore essentially two different Beld conGgu-
rations, viz. , that both fields tend to align the molecules
in the same direction or that they favor alignments in
mutually perpendicular directions. In the equations, a
change of 90 of the magnetic Geld direction translates
into a change of sign of y .
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FIG. 2. Electrical free energy density (1) as a function of P.
E is shown (a) and (c) in the unstable field range for E ) 0
and E ( 0, respectively, and (b) and (d) in the metastable
field range. F(P) is a periodic function of P, but only the
range [0, 2vr] is shown.
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unstable and split into two fronts that propagate into
these domains. Depending on the field strength, we thus
have a problem of &ont propagation either into an un-
stable state or into a metastable state. We stress that
our analysis of front propagation and the switching dy-
namics in smectic C* cannot be based on an analysis of
the field energy E(P) alone. Both in the unstable and
metastable field range, it is the interplay between elastic
and electromagnetic energy that determines the motion
of the domain walls.

The equation that governs the dynamics of the twist
angle Q is [4,6,7,19]

0$ 8 P BF
Bt Bz2 ojp

'

where g is the rotational viscosity and K is the elastic
constant. The z axis is taken normal to the smectic lay-
ers. Since the propagation starts with a reversal of the
Geld we consider a case in which a field E is switched
to —E. From here on we will measure time in units of
rt/PE„ length in units of gK/PE„ the electric field in
units of E, and the magnetic field in units of H . In
these rescaled units, the above dynamical equation then
becomes with (1), after the field has been switched to the
negative value —E

OP O'P . 1 (, 1+ Esi Pn——
~

E + H~ sin 2—$ .
Ot Bz2 2 i 4 )

This equation is an example of a reaction-diffusion equa-
tion Pi ——P„+f (P) that has been studied extensively
in the context of front propagation [5,9—11,13—16]. Sur-
prisingly, the physical relevant case (4) can be solved ex-
actly. Our main results concern explicit expressions for
the asymptotic velocity of the single front propagating
into the state P = 0 and creating a domain where P = m

(all mod 2m', of course). We will first derive these re-
sults and then discuss the implications for the switching
in Sm-C*.

Metastable field regime. For equations of type (4), the
front solution quickly approaches a uniformly traveling
wave solution of the form P(z —vt) = P((); our goal is
to determine v for a front moving to the right into the
state P = 0 at ( —+ oo. When substituted into (4), the
ansatz P = P(() leads to a single second-order ordinary
difFerential equation for P. As this is equivalent to a set
of two first-order ordinary difFerential equations for P and
P', we can think of this set of equations as describing a
flow in a two-dimensional phase space. The metastable
state at (P = 0, P' = 0) into which the front propagates
and the stable state (P = vr, P' = 0) created by the front
correspond to fixed points of these equations. Linearizing
around the metastable fixed point by substituting P
e ~~, one finds

where
E2

E2+ H2/4 ' A = gE'+ H'/4.

This result solves the asymptotic behavior of &onts in
the metastable field regime.

Unstable field regime In the . unstable field regime,
there are two positive real roots A~ according to (5) over
some range of velocities. As is well known [5,9—12], the
above phase-space-type arguments then imply that there
is then a continuous set of solutions of the form P(x —vt),
with v in some range. The minimum value of the velocity
range for which the roots A~ are real is according to (5)

v* = 2+E —E2 —H2/4 .

At this point the roots A~ coincide and are equal to

A* = gE —E2 —H2/4. (8)

Note that for an arbitrary velocity v ) v*, one ex-
pects the asymptotic decay of the &ont profile to zero
to be governed by the smallest root A, i.e., to have

exp( —A () as ( -+ oo.
Since there is a whole set of steady state solutions, ad-

ditional dynamical arguments are needed in the unstable
Geld regime to determine the selected &ont speed. For
equations of the simple type (4), the results from the
theory [5,9—12] can be summarized as follows: v* (the
so-called linear marginal stability velocity) is the asymp-
totic front speed (for sufficiently localized initial condi-
tions; see below) unless there exists a particular nonlinear
front solution [11,12] with the property that it is faster
and that its asymptotic decay rate exp( —At() is not gov-
erned by the smallest root, but instead by A+.'

quired front solution must approach this fixed point for

( -+ oo along the single stable eigendirection e ~+~. A
straightforward analysis near the other Gxed point shows
that there is also only one appropriate eigendirection for
the front solution there. These results together imply
that the required front or domain wall solution corre-
sponds to a single unique trajectory in phase space con-
necting the two fixed points (a so-called "heteroclinic tra-
jectory"), which only exists at a particular, unique value
of the velocity. (Strictly speaking, there is a discrete
set of front solutions. Only the one with the largest ve-

locity is stable and this is the one we determine. ) As
noted in [11,12,15], these special solutions can often be
found by making the ansatz that they are actually so-

lutions of a first-order differential equation P' = h(g),
with h a suitable function of P. Here the simple choice

h(P) = —A+ sing is found to give the solution [17,18]

P(() = 2 arctan[exp( —A()]

1
A~ = — v 6 gvz —4(E —E2 —H2/4)

2
(5) v~)v, At = A+(vt) ) A* . (9)

In the metastable field regime, A+ is positive while A

is negative. Thus the perturbation exp( —A () diverges
away from the fixed point (P = 0, P' = 0) and so the re-

If such a front solution, which in technical terms is called
a strong heteroclinic orbit [15], exists, then vt is the se-
lected &ont speed.
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Physically, one expects that when, upon varying a pa-
rameter, the state into which a front propagates changes
from metastable into unstable, the selected front speed
will not change abruptly. This expectation is nicely em-
bodied in the structural stability hypothesis underlying
the recent approach by Paquette and Oono [13].As noted
in [11,12], in practice this means that the unique front so-
lution found in the metastable regime, whose asymptotic
decay is governed by A+, becomes precisely the nonlinear
front solution that satisfies (9) over some range of param-
eters in the metastable regime. In the present case, this
expectation is borne out again: it is straightforward to
verify that the solution given by (6) is indeed the nonlin-
ear front solution satisfying (9) for E & Ei and E ) E2,
with
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4~2

Et= 1 1+ 1 —4H22 (10)

At these crossover fields, vt = v*, so that the front veloc-
ity smoothly changes over to the linear marginal stability
value v* at these field values. Note also that for H = 0.5,
E& ——E2., consequently, for magnetic fields larger than
this value the velocity is always given by vt (6) for any
value of the electric Geld. Thus our predictions for the
front speeds are, for

Ei ( E ( E2, the unstable regime,
v* = 2+E —E2 —H2/4 for Ei & E & E2
vt = QE /(E + H2/4) otherwise

and, for E (Ei or E ) E2, the metastable regime,

v=v

where the crossover field values Ei and E2 given by (2)
are written in dimensionless units.

We have veriGed the above predictions for the front
velocities by performing numerical simulations of (4) in a
large but finite system to obtain the asymptotic selected
front speeds. As shown in Fig. 3, our results are in good
agreement with the analytical predictions: the fact that
the measured velocities are slightly below the predicted
ones is due to the slow convergence to the asymptotic
value in the linear marginal stability regime [11].

So far, we have confined the analysis to the case that
both y and e are positive. However, since we measure
the director relative to the electrical Geld, the sign of y
can be changed by rotating the magnetic Geld 90 in the
plane of the smectic layers, so that when g is positive in
the setup we discussed before, it can be made negative by
making the magnetic field direction parallel to the electric
field direction [19,20] or vice versa. In our equations, a
change of sign in y can be incorporated by changing the
sign in front of each H term. [In this case Ei and Eit
are both negative and therefore irrelevant. Moreover, for
field strengths E & (—1 + Vrl + H2/4)/2, the minimum
energy configuration is obtained for an angle P between 0
and 7r. As discussed further by [6], we then do not have a

FIC. 3. Results for the predicted front velocity for three
values of the magnetic Geld: H = 0, H = 0.5 with positive

(in this case, v = vt for all field values E), and II = 0.5
with negative y, in which case E2 = (1 + v 2)/4 0.6. The
symbols indicate the values obtained in numerical simulations
in a finite system. The crossover between linear and nonlinear
marginal stability is found from (7) or (8) and (11) to be
v„„=+2K. To the left of this curve v" is selected and vt
is found to the right of this curve.

problem of front propagation and switching can be much
faster. ] As also shown in Fig. 3, the front speed goes
through a maximum in this case for H g 0. Note that in
all cases, the dimensionless front velocity approaches the
value 1 for large Geld strengths.

How easily can these predictions be tested experimen-
tally? The experiments by Cladis et aL [3] have already
demonstrated the feasibility of measuring the domain
switching with crossed polarizers. For such experiments
to be interpretable in terms of front dynamics, the width
W of the fronts has to be much less than the pitch po [4].
As shown by (6) and (8), for dimensionless field strengths
of order unity, the dimensional wall 8 width is of order
gK/PE, = QKe~/4vrP2 Hence W .can be made small
by taking a material with small K and/or large P. K is
typically of order 10 dyn or somewhat larger [4,19], e

can range from O. l to a value of order unity [19], while
the polarization P is typically of order 10 in Gaussian cgs
units, but it can be as large as 10 [19]. For the typical
parameter values, we then have a wall width of the order
of 1 pm or less. Typically the pitch po is of the order of
10 pm. Hence by selecting appropriate materials with a
large polarization, it appears to be possible to satisfy the
condition TV (( p0 experimentally.

In a stable conGguration, the system consists of do-
mains of the favorable configuration, separated by 27t

domain walls a distance po apart. Upon reversing the
Geld, these walls split into two fronts that move apart.
For W « po, the switching time then approaches po/2v,
where v is the asymptotic front velocity. We have in-
vestigated numerically how accurate this estimate is as a
function of the ratio W/po. For a dimensionless domain
size of 100, the switch times coincide with the predictions
from the asymptotic front speed within 3%, when E is
larger than 0.2; for smaller E the wall size is relatively
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large and the discrepancy between asymptotic speed and
switch times increases rapidly. In dimensionless units,
the size of the domain walls for E + 0.2 is of order 5.

For the typical values given above, the field scale
E = 4' P/e is of order 100 in Gaussian cgs units, i.e. ,
of order 3.10 V/cm. This value is right in the mid-
dle of the range of field values studied by Cladis et al.
Moreover, since the dimensionless velocity approaches 1
in the limit of large Belds, we find with the parameter
values recommended in [4,21] for decyloxybenzylidene-@'-
amino-2-methylbutylcinnamate used in this experiment
a large field front velocity of rl gKPE, = 0.6 crn/s.
With a pitch of 1.75 pm, this leads to a switching time
of the order of 0.2 ms. This is comparable to the shortest
switching time observed in the experiments of Cladis et
al. [3], but there is no indication in their data that the
switching time saturates in this range. Moreover, the
condition TV (( po is not very well satisBed in their ex-
periments and as noted by Maclennan et aL [4], when the
dielectric terms are neglected completely, the switching
is predicted to be faster than actually observed. Clearly,
detailed experiments with appropriately selected materi-
als will be needed to put our predictions to a stringent
test.

Our analysis shows that in order to inHuence the front
speed appreciable with a magnetic field, one needs fields
of the order of H = gnP/e y Using . the typical
value 10 for y [19], H is of the order of 1 T. In
an actual experiment, one also has to make sure that
the Belds do not exceed the critical values above which
the helix may unwind [19,22], even though this can be
a dynamically very slow process [22]. The typical field
values that one needs in experiments on front motion turn
out to be below this critical value. Unwanted efI'ects from
the motion of free ions can be prevented by using an ac

field with a square envelope of frequency much lower than
the inverse switching time [20].

In our analysis, we have also neglected backHow effects.
If the viscosity is large, backHow efFects can be neglected
[7]. Zou et al. [7] have also shown that for small fields
backHow is not important even for small viscosity; for
typical values of interest to us, we estimate following [7]
that these eKects are relatively unimportant.

We note one Bnal remarkable point. In the theory
of front propagation into unstable states, it is known

[5,9—ll] that the front speed can theoretically exceed v*

in the linear marginal stability regime if the initial con-
ditions are such that initially qi(2:, t) = 0 drops off as
e ' with Ao & A'. We do not know of any experimen-
tal system where one has been able to test this. If more
detailed experiments similar to those of Cladis et al. can
be done, they will in principle yield a way to test this
by making the Beld strength before and after the Beld
reversal difI'erent: the latter afFects A*, the former Ao.

In summary, we have calculated the front propaga-
tion in the Sm-C' phase subjected to electric and mag-
netic Belds parallel to smectic layers. We showed that
this system ofI'ers unique opportunities for observing the
crossover between the linear and nonlinear marginal sta-
bility front propagation and between front propagation
into unstable states and into metastable states. Theo-
retically our results are of interest because they concern
a rare case in which front propagation can be solved for
nonpolynomial nonlinearities.
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