103 research outputs found
Anandamide Suppresses Proliferation and Cytokine Release from Primary Human T-Lymphocytes Mainly via CB2 Receptors
Anandamide (AEA) is an endogenous lipid mediator that exerts several effects in the brain as well as in peripheral tissues. These effects are mediated mainly by two types of cannabinoid receptors, named CB(1)R and CB(2)R, making AEA a prominent member of the "endocannabinoid" family. Also immune cells express CB(1) and CB(2) receptors, and possess the whole machinery responsible for endocannabinoid metabolism. Not surprisingly, evidence has been accumulated showing manifold roles of endocannabinoids in the modulation of the immune system. However, details of such a modulation have not yet been disclosed in primary human T-cells.In this investigation we used flow cytometry and ELISA tests, in order to show that AEA suppresses proliferation and release of cytokines like IL-2, TNF-alpha and INF-gamma from activated human peripheral T-lymphocytes. However, AEA did not exert any cytotoxic effect on T-cells. The immunosuppression induced by AEA was mainly dependent on CB(2)R, since it could be mimicked by the CB(2)R selective agonist JWH-015, and could be blocked by the specific CB(2)R antagonist SR144528. Instead the selective CB(1)R agonist ACEA, or the selective CB(1)R antagonist SR141716, were ineffective. Furthermore, we demonstrated an unprecedented immunosuppressive effect of AEA on IL-17 production, a typical cytokine that is released from the unique CD4+ T-cell subset T-helper 17.Overall, our study investigates for the first time the effects of the endocannabinoid AEA on primary human T-lymphocytes, demonstrating that it is a powerful modulator of immune cell functions. In particular, not only we clarify that CB(2)R mediates the immunosuppressive activity of AEA, but we are the first to describe such an immunosuppressive effect on the newly identified Th-17 cells. These findings might be of crucial importance for the rational design of new endocannabinoid-based immunotherapeutic approaches
B-Raf and CRHR1 internalization mediate biphasic ERK1/2 activation by CRH in hippocampal HT22 Cells.
CRH is a key regulator of neuroendocrine, autonomic, and behavioral response to stress. CRH-stimulated CRH receptor 1 (CRHR1) activates ERK1/2 depending on intracellular context. In a previous work, we demonstrated that CRH activates ERK1/2 in limbic areas of the mouse brain (hippocampus and basolateral amygdala). ERK1/2 is an essential mediator of hippocampal physiological processes including emotional behavior, synaptic plasticity, learning, and memory. To elucidate the molecular mechanisms by which CRH activates ERK1/2 in hippocampal neurons, we used the mouse hippocampal cell line HT22. We document for the first time that ERK1/2 activation in response to CRH is biphasic, involving a first cAMP- and B-Raf-dependent early phase and a second phase that critically depends on CRHR1 internalization and ß-arrestin2. By means of mass-spectrometry-based screening, we identified B-Raf-associated proteins that coimmunoprecipitate with endogenous B-Raf after CRHR1 activation. Using molecular and pharmacological tools, the functional impact of selected B-Raf partners in CRH-dependent ERK1/2 activation was dissected. These results indicate that 14-3-3 proteins, protein kinase A, and Rap1, are essential for early CRH-induced ERK1/2 activation, whereas dynamin and vimentin are required for the CRHR1 internalization-dependent phase. Both phases of ERK1/2 activation depend on calcium influx and are affected by calcium/calmodulin-dependent protein kinase II inactivation. Thus, this report describes the dynamics and biphasic nature of ERK1/2 activation downstream neuronal CRHR1 and identifies several new critical components of the CRHR1 signaling machinery that selectively controls the early and late phases of ERK1/2 activation, thus providing new potential therapeutic targets for stress-related disorders.Fil: Bonfiglio, Juan José. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Parque. Centenario. Instituto de Investigación En Biomedicina de Buenos Aires - Conicet -; Instituto P; Argentina;Fil: Inda, Carolina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Parque. Centenario. Instituto de Investigación En Biomedicina de Buenos Aires - Conicet -; Instituto P; Argentina;Fil: Senin, Sergio Ariel. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Parque. Centenario. Instituto de Investigación En Biomedicina de Buenos Aires - Conicet -; Instituto P; Argentina;Fil: Maccarrone, Giuseppina. Max-Planck-Institut Für Psychiatrie; Alemania;Fil: Refojo, Damian. Max-Planck-Institut Für Psychiatrie; Alemania;Fil: Giacomini, Damiana Paula. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto de Invest.bioquimicas de Bs.as(i); Argentina;Fil: Turck, Christoph W.. Max-Planck-Institut Für Psychiatrie; Alemania;Fil: Holsboer, Florian. Max-Planck-Institut Für Psychiatrie; Alemania;Fil: Arzt, Eduardo Simon. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Parque. Centenario. Instituto de Investigación En Biomedicina de Buenos Aires - Conicet -; Instituto P; Argentina;Fil: Silberstein, Susana. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Parque. Centenario. Instituto de Investigación En Biomedicina de Buenos Aires - Conicet -; Instituto P; Argentina
Characterization of Cystatin B Interactome in Saliva from Healthy Elderly and Alzheimer's Disease Patients
Cystatin B is a small, multifunctional protein involved in the regulation of inflammation, innate immune response, and neuronal protection and found highly abundant in the brains of patients with Alzheimer's disease (AD). Recently, our study demonstrated a significant association between the level of salivary cystatin B and AD. Since the protein is able to establish protein-protein interaction (PPI) in different contexts and aggregation-prone proteins and the PPI networks are relevant for AD pathogenesis, and due to the relevance of finding new AD markers in peripheral biofluids, we thought it was interesting to study the possible involvement of cystatin B in PPIs in saliva and to evaluate differences and similarities between AD and age-matched elderly healthy controls (HC). For this purpose, we applied a co-immunoprecipitation procedure and a bottom-up proteomics analysis to purify, identify, and quantify cystatin B interactors. Results demonstrated for the first time the existence of a salivary cystatin B-linked multi-protein complex composed by 82 interactors and largely expressed in the body. Interactors are involved in neutrophil activation, antimicrobial activity, modulation of the cytoskeleton and extra-cellular matrix (ECM), and glucose metabolism. Preliminary quantitative data showed significantly lower levels of triosophosphate isomerase 1 and higher levels of mucin 7, BPI, and matrix Gla protein in AD with respect to HC, suggesting implications associated with AD of altered glucose metabolism, antibacterial activities, and calcification-associated processes. Data are available via ProteomeXchange with identifiers PXD039286 and PXD030679
Tau deletion prevents stress-induced dendritic atrophy in prefrontal cortex: role of synaptic mitochondria
Tau protein in dendrites and synapses has been recently implicated in synaptic degeneration and neuronal malfunction.
Chronic stress, awell-known inducer of neuronal/synaptic atrophy, triggers hyperphosphorylation of Tau protein and cognitive
deficits. However, the cause–effect relationship between these events remains to be established. To test the involvement of Tau
in stress-induced impairments of cognition,we investigated the impact of stress on cognitive behavior, neuronal structure, and
the synaptic proteome in the prefrontal cortex (PFC) of Tau knock-out (Tau-KO) and wild-type (WT) mice. Whereas exposure to
chronic stress resulted in atrophy of apical dendrites and spine loss in PFC neurons as well as significant impairments in
working memory in WT mice, such changes were absent in Tau-KO animals. Quantitative proteomic analysis of PFC
synaptosomal fractions, combined with transmission electron microscopy analysis, suggested a prominent role for
mitochondria in the regulation of the effects of stress. Specifically, chronically stressed animals exhibit Tau-dependent
alterations in the levels of proteins involved in mitochondrial transport and oxidative phosphorylation aswell as in the synaptic
localization of mitochondria in PFC. These findings provide evidence for a causal role of Tau in mediating stress-elicited
neuronal atrophy and cognitive impairment and indicate that Tau may exert its effects through synaptic mitochondria.This work was funded by the Portuguese Foundation for Science
& Technology (FCT, grant number NMC-113934 to I.S.), the EU
Consortium Switchbox (grant number Health-FP7-2010-259772
to O.F.X.A. and N.S.), the Deutsche Forschungsgemeinschaft
(grant number FI 1895/1-1 to M.D.F.) and the Max Planck Society
(M.D.F., G.M., C.W.T., and O.F.X.A.). In addition, this workwas also
co-financed by the Portuguese North Regional Operational Program
(ON.2 – O Novo Norte) under the National Strategic Reference
Framework (QREN), through the European Regional
Development Fund (FEDER) (N.S.). S.L. and I.S. are holders of
FCT Fellowships. J.V-S. is a recipient of a PhD fellowship (PD/
BD/105938/2014) of the University of Minho MD/PhD Program
funded by FCT.info:eu-repo/semantics/publishedVersio
Recommended from our members
Ketamine's antidepressant effect is mediated by energy metabolism and antioxidant defense system.
Fewer than 50% of all patients with major depressive disorder (MDD) treated with currently available antidepressants (ADs) show full remission. Moreover, about one third of the patients suffering from MDD does not respond to conventional ADs and develop treatment-resistant depression (TRD). Ketamine, a non-competitive, voltage-dependent N-Methyl-D-aspartate receptor (NMDAR) antagonist, has been shown to have a rapid antidepressant effect, especially in patients suffering from TRD. Hippocampi of ketamine-treated mice were analysed by metabolome and proteome profiling to delineate ketamine treatment-affected molecular pathways and biosignatures. Our data implicate mitochondrial energy metabolism and the antioxidant defense system as downstream effectors of the ketamine response. Specifically, ketamine tended to downregulate the adenosine triphosphate (ATP)/adenosine diphosphate (ADP) metabolite ratio which strongly correlated with forced swim test (FST) floating time. Furthermore, we found increased levels of enzymes that are part of the 'oxidative phosphorylation' (OXPHOS) pathway. Our study also suggests that ketamine causes less protein damage by rapidly decreasing reactive oxygen species (ROS) production and lend further support to the hypothesis that mitochondria have a critical role for mediating antidepressant action including the rapid ketamine response
Shotgun Mass Spectrometry Workflow Combining IEF and LC-MALDI-TOF/TOF
We present a high throughput shotgun mass spectrometry workflow using a bidimensional peptide fractionation procedure consisting of isoelectric focusing and RP-HPLC prior to mass spectrometric analysis, with the aim of optimizing peptide separation and protein identification. As part of the workflow we used the ‘Isotope-Coded Protein Labeling’ (ICPL) method for accurate relative quantitation of protein expression. Such workflow was successfully applied to a comparative proteome analysis of schizophrenia versus healthy control brain tissues and can be an alternative to proteome researches
Endocannabinoids inhibit release of nerve growth factor by inflammation-activated mast cells
International audienceNerve growth factor (NGF) is a pleiotropic member of the neurotrophin family. Beside its neuronal effects, NGF plays a role in various processes, including angiogenesis. Mast cells release NGF and are among elements contributing to angiogenesis, a process regulated by arrays of factors, including the inhibitory cannabinoids. The possible inhibitory role of cannabinoids on mast cell-related NGF mitogenic effect on endothelial cells was then investigated. Human mastocytic cells HMC-1, challenged with PMA to yield release of NGF, were preincubated with the endocannabinoid PEA. Then, conditioned media were added to HUVEC cultures. PMA-activated HMC-1 cells released substantial amounts of NGF, whereas PEA inhibited PMA-induced NGF release. HUVEC proliferation increased after treatment with media from activated HMC-1 cells, while was reduced with media from HMC-1 cells treated with PEA. To characterize receptors mediating such effects of PEA, RT-PCR and western blot analysis were performed on HMC-1 cells. None of the two cannabinoid CB1 and CB2 receptors was expressed by HMC-1 cells, which on the other hand expressed the orphan receptor GPR55. PEA was ineffective in inhibiting NGF release from HMC-1 cells treated with PMA and transfected with positive GPR55 RNAi, whereas it induced significant reduction of NGF in cells transfected with the corresponding negative control RNAi. Results indicate that NGF released from inflammatory mast cells induces angiogenesis. Cannabinoids attenuate such pro-angiogenic effects of NGF. Finally, cannabinoids could be considered for antiangiogenic treatment in disorders characterized by prominent inflammation
The quest for brain disorder biomarkers
The identification of disease markers in tissues and body fluids requires an extensive and thorough analysis of its protein constituents. In our efforts to identify biomarkers for affective and neurological disorders we are pursuing several different strategies. On one hand we are using animal models that represent defined phenotypes charactersistic for the respective disorder in humans. In addition, we are analyzing human specimens from carefully phenotyped patient groups. Several fractions representing different protein classes from human cerebrospinal fluid obtained by lumbar puncture are used for this purpose. Our biomarker identification efforts range from classical proteomics approaches such as two dimensional gel electrophoresis and mass spectrometry to phage display screens with cerebrospinal fluid antibodies
The quest for brain disorder biomarkers
The identification of disease markers in tissues and body fluids requires an extensive and thorough analysis of its protein constituents. In our efforts to identify biomarkers for affective and neurological disorders we are pursuing several different strategies. On one hand we are using animal models that represent defined phenotypes charactersistic for the respective disorder in humans. In addition, we are analyzing human specimens from carefully phenotyped patient groups. Several fractions representing different protein classes from human cerebrospinal fluid obtained by lumbar puncture are used for this purpose. Our biomarker identification efforts range from classical proteomics approaches such as two dimensional gel electrophoresis and mass spectrometry to phage display screens with cerebrospinal fluid antibodies
Stable Isotope Metabolic Labeling with a Novel 15N-Enriched Bacteria Diet for Improved Proteomic Analyses of Mouse Models for Psychopathologies
The identification of differentially regulated proteins in animal models of psychiatric diseases is essential for a comprehensive analysis of associated psychopathological processes. Mass spectrometry is the most relevant method for analyzing differences in protein expression of tissue and body fluid proteomes. However, standardization of sample handling and sample-to-sample variability are problematic. Stable isotope metabolic labeling of a proteome represents the gold standard for quantitative mass spectrometry analysis. The simultaneous processing of a mixture of labeled and unlabeled samples allows a sensitive and accurate comparative analysis between the respective proteomes. Here, we describe a cost-effective feeding protocol based on a newly developed 15N bacteria diet based on Ralstonia eutropha protein, which was applied to a mouse model for trait anxiety. Tissue from 15N-labeled vs. 14N-unlabeled mice was examined by mass spectrometry and differences in the expression of glyoxalase-1 (GLO1) and histidine triad nucleotide binding protein 2 (Hint2) proteins were correlated with the animals' psychopathological behaviors for methodological validation and proof of concept, respectively. Additionally, phenotyping unraveled an antidepressant-like effect of the incorporation of the stable isotope 15N into the proteome of highly anxious mice. This novel phenomenon is of considerable relevance to the metabolic labeling method and could provide an opportunity for the discovery of candidate proteins involved in depression-like behavior. The newly developed 15N bacteria diet provides researchers a novel tool to discover disease-relevant protein expression differences in mouse models using quantitative mass spectrometry
- …