320 research outputs found

    Would you like to sample'l Robot engagement in a shopping centre

    Full text link
    © 2017 IEEE. Nowadays, robots are gradually appearing in public spaces such as libraries, train stations, airports and shopping centres. Only a limited percentage of research literature explores robot applications in public spaces. Studying robot applications in the wild is particularly important for designing commercially viable applications able to meet a specific goal. Therefore, in this paper we conduct an experiment to test a robot application in a shopping centre, aiming to provide results relevant for today's technological capability and market. We compared the performance of a robot and a human in promoting food samples in a shopping centre, a well known commercial application, and then analysed the effects of the type of engagement used to achieve this goal. Our results show that the robot is able to engage customers similarly to a human as expected. However unexpectedly, while an actively engaging human was able to perform better than a passively engaging human, we found the opposite effect for the robot. In this paper we investigate this phenomenon, with possible explanation ready to be explored and tested in subsequent research

    A newborn with Cornelia de Lange syndrome: a case report

    Get PDF
    Cornelia de Lange syndrome (CdLS) is a rarely seen multisystem developmental disorder syndrome characterized by facial dysmorphia (arched eyebrows, synophrys, depressed nasal bridge, long philtrum, down-turned angles of the mouth), upper-extremity malformations, hirsutism, cardiac defects, growth and cognitive retardation, and gastrointestinal abnormalities. The features of this disorder vary widely among affected individuals and range from relatively mild to severe. Early in life, the distinctive craniofacial features in mild de Lange syndrome may be indistinguishable from the severe (classical) phenotype. We present here a case of newborn with CdLs

    'Kitchen Knowledge', Desperate Foods, and Ritual Healing in Everyday Survival Strategies during the Great Famine in China, 1958-62

    Get PDF
    AbstractFamine is a social and economic crisis that is commonly accompanied by widespread of malnutrition, starvation, epidemic disease, and increased mortality. This paper focuses on the period of the Great Leap Famine in China between 1958 and 1962. Based on newly-collected oral interviews and archival evidence, it gives voices to ordinary villagers from different parts of China?from various counties in one of China?s biggest and most populated Sichuan province in the southwest to Shandong in the east and Hunan in central China and examines their experiences and their survival strategies in times of hunger, illness, and death. It shows that an integral part of everyday famine culture, particularly in rural China, which was worst hit, concerns the kitchen knowledge and practice of healing and nutrition. Many traditional recipes that were used in previous times were rediscovered and used as everyday hunger-coping techniques. Some are dated back to the Ming dynasty?a few were recorded in Materia Medica for Famine Relief (Qiuhuang bencao ????, c. 1406). Using the methodology of oral history set against the historical background of traditional materia medica, this paper elicits how ordinary people in rural China devised complex and plural strategies to cope with fundamental biological crises

    Validation of Plasmodium falciparum dUTPase as the target of 5'-tritylated deoxyuridine analogues with anti-malarial activity

    Get PDF
    BACKGROUND: Malaria remains as a major global problem, being one of the infectious diseases that engender highest mortality across the world. Due to the appearance of resistance and the lack of an effective vaccine, the search of novel anti-malarials is required. Deoxyuridine 5'-triphosphate nucleotido-hydrolase (dUTPase) is responsible for the hydrolysis of dUTP to dUMP within the parasite and has been proposed as an essential step in pyrimidine metabolism by providing dUMP for thymidylate biosynthesis. In this work, efforts to validate dUTPase as a drug target in Plasmodium falciparum are reported. METHODS: To investigate the role of PfdUTPase in cell survival different strategies to generate knockout mutants were used. For validation of PfdUTPase as the intracellular target of four inhibitors of the enzyme, mutants overexpressing PfdUTPase and HsdUTPase were created and the IC50 for each cell line with each compound was determined. The effect of these compounds on dUTP and dTTP levels from P. falciparum was measured using a DNA polymerase assay. Detailed localization studies by indirect immunofluorescence microscopy and live cell imaging were also performed using a cell line overexpressing a Pfdut-GFP fusion protein. RESULTS:Different attempts of disruption of the dut gene of P. falciparum were unsuccessful while a 3' replacement construct could recombine correctly in the locus suggesting that the enzyme is essential. The four 5'-tritylated deoxyuridine analogues described are potent inhibitors of the P. falciparum dUTPase and exhibit antiplasmodial activity. Overexpression of the Plasmodium and human enzymes conferred resistance against selective compounds, providing chemical validation of the target and confirming that indeed dUTPase inhibition is involved in anti-malarial activity. In addition, incubation with these inhibitors was associated with a depletion of the dTTP pool corroborating the central role of dUTPase in dTTP synthesis. PfdUTPase is mainly localized in the cytosol. CONCLUSION: These results strongly confirm the pivotal and essential role of dUTPase in pyrimidine biosynthesis of P. falciparum intraerythrocytic stages

    Identification of Attractive Drug Targets in Neglected-Disease Pathogens Using an In Silico Approach

    Get PDF
    In cell-based drug development, researchers attempt to create drugs that kill a pathogen without necessarily understanding the details of how the drugs work. In contrast, target-based drug development entails the search for compounds that act on a specific intracellular target—often a protein known or suspected to be required for survival of the pathogen. The latter approach to drug development has been facilitated greatly by the sequencing of many pathogen genomes and the incorporation of genome data into user-friendly databases. The present paper shows how the database TDRtargets.org can identify proteins that might be considered good drug targets for diseases such as African sleeping sickness, Chagas disease, parasitic worm infections, tuberculosis, and malaria. These proteins may score highly in searches of the database because they are dissimilar to human proteins, are structurally similar to other “druggable” proteins, have functions that are easy to measure, and/or fulfill other criteria. Researchers can use the lists of high-scoring proteins as a basis for deciding which potential drug targets to pursue experimentally

    Comparative Gene Expression Profiling of P. falciparum Malaria Parasites Exposed to Three Different Histone Deacetylase Inhibitors

    Get PDF
    Histone deacetylase (HDAC) inhibitors are being intensively pursued as potential new drugs for a range of diseases, including malaria. HDAC inhibitors are also important tools for the study of epigenetic mechanisms, transcriptional control, and other important cellular processes. In this study the effects of three structurally related antimalarial HDAC inhibitors on P. falciparum malaria parasite gene expression were compared. The three hydroxamate-based compounds, trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA; Vorinostat®) and a 2-aminosuberic acid derivative (2-ASA-9), all caused profound transcriptional effects, with ∼2–21% of genes having >2-fold altered expression following 2 h exposure to the compounds. Only two genes, alpha tubulin II and a hydrolase, were up-regulated by all three compounds after 2 h exposure in all biological replicates examined. The transcriptional changes observed after 2 h exposure to HDAC inhibitors were found to be largely transitory, with only 1–5% of genes being regulated after removing the compounds and culturing for a further 2 h. Despite some structural similarity, the three inhibitors caused quite diverse transcriptional effects, possibly reflecting subtle differences in mode of action or cellular distribution. This dataset represents an important contribution to our understanding of how HDAC inhibitors act on malaria parasites and identifies alpha tubulin II as a potential transcriptional marker of HDAC inhibition in malaria parasites that may be able to be exploited for future development of HDAC inhibitors as new antimalarial agents

    Computerized clinical decision support systems for drug prescribing and management: A decision-maker-researcher partnership systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computerized clinical decision support systems (CCDSSs) for drug therapy management are designed to promote safe and effective medication use. Evidence documenting the effectiveness of CCDSSs for improving drug therapy is necessary for informed adoption decisions. The objective of this review was to systematically review randomized controlled trials assessing the effects of CCDSSs for drug therapy management on process of care and patient outcomes. We also sought to identify system and study characteristics that predicted benefit.</p> <p>Methods</p> <p>We conducted a decision-maker-researcher partnership systematic review. We updated our earlier reviews (1998, 2005) by searching MEDLINE, EMBASE, EBM Reviews, Inspec, and other databases, and consulting reference lists through January 2010. Authors of 82% of included studies confirmed or supplemented extracted data. We included only randomized controlled trials that evaluated the effect on process of care or patient outcomes of a CCDSS for drug therapy management compared to care provided without a CCDSS. A study was considered to have a positive effect (<it>i.e.</it>, CCDSS showed improvement) if at least 50% of the relevant study outcomes were statistically significantly positive.</p> <p>Results</p> <p>Sixty-five studies met our inclusion criteria, including 41 new studies since our previous review. Methodological quality was generally high and unchanged with time. CCDSSs improved process of care performance in 37 of the 59 studies assessing this type of outcome (64%, 57% of all studies). Twenty-nine trials assessed patient outcomes, of which six trials (21%, 9% of all trials) reported improvements.</p> <p>Conclusions</p> <p>CCDSSs inconsistently improved process of care measures and seldomly improved patient outcomes. Lack of clear patient benefit and lack of data on harms and costs preclude a recommendation to adopt CCDSSs for drug therapy management.</p

    In vitro mycorrhization of micropropagated plants: studies on Castanea sativa Mill.

    Get PDF
    In vitro mycorrhization can be made by several axenic and nonaxenic techniques but criticism exists about their artificiality and inability to reproduce under natural conditions. However, artificial mycorrhization under controlled conditions can provide important information about the physiology of symbiosis. Micropropagated Castanea sativa plants were inoculated with the mycorrhizal fungus Pisolithus tinctorius after in vitro rooting. The mycorrhizal process was monitored at regular intervals in order to evaluate the mantle and hartig net formation, and the growth rates of mycorrhizal and nonmycorrhizal plants. Plant roots show fungal hyphae adhesion at the surface after 24 hours of mycorrhizal induction. After 20 days a mantle can be observed and a hartig net is forming although the morphology of the epidermal cells remains unaltered. At 30 days of root–fungus contact the hartig net is well developed and the epidermal cells are already enlarged. After 50 days of mycorrhizal induction, growth was higher for mycorrhizal plants than for nonmycorrhizal ones. The length of the major roots was lower in mycorrhizal plants after 40 days. Fresh and dry weights were higher in mycorrhizal plants after 30 days. The growth rates of chestnut mycorrhizal plants are in agreement with the morphological development of the mycorrhizal structures observed at each mycorrhizal time. The assessment of symbiotic establishment takes into account the formation of a mantle and a hartig net that were already developed at 30 days, when differences between fresh and dry weights of mycorrhizal and nonmycorrhizal plants can be quantified. In vitro conditions, mycorrhization influences plant physiology after 20 days of root–fungus contact, namely in terms of growth rates. Fresh and dry weights, heights, stem diameter and growth rates increased while major root growth rate decreased in mycorrhizal plants.Springe

    Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus

    Get PDF
    Cohesin is a chromatin-associated protein complex that mediates sister chromatid cohesion by connecting replicated DNA molecules. Cohesin also has important roles in gene regulation, but the mechanistic basis of this function is poorly understood. In mammalian genomes, cohesin co-localizes with CCCTC binding factor (CTCF), a zinc finger protein implicated in multiple gene regulatory events. At the imprinted IGF2-H19 locus, CTCF plays an important role in organizing allele-specific higher-order chromatin conformation and functions as an enhancer blocking transcriptional insulator. Here we have used chromosome conformation capture (3C) assays and RNAi-mediated depletion of cohesin to address whether cohesin affects higher order chromatin conformation at the IGF2-H19 locus in human cells. Our data show that cohesin has a critical role in maintaining CTCF-mediated chromatin conformation at the locus and that disruption of this conformation coincides with changes in IGF2 expression. We show that the cohesin-dependent, higher-order chromatin conformation of the locus exists in both G1 and G2 phases of the cell cycle and is therefore independent of cohesin's function in sister chromatid cohesion. We propose that cohesin can mediate interactions between DNA molecules in cis to insulate genes through the formation of chromatin loops, analogous to the cohesin mediated interaction with sister chromatids in trans to establish cohesion
    corecore