42 research outputs found

    Resonant soft X-ray scattering for polymer materials

    Full text link
    Resonant Soft X-ray Scattering (RSoXS) was developed over the last a few years, and the first dedicated resonant soft X-ray scattering beamline for soft materials was constructed at the Advanced Light Source, LBNL. RSoXS combines soft X-ray spectroscopy with X-ray scattering and thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Using RSoXS to characterize multi-length scale soft materials with heterogeneous chemical structures, we have demonstrated that soft X-ray scattering is a unique complementary technique to conventional hard X-ray and neutron scattering. Its unique chemical sensitivity, large accessible size scale, molecular bond orientation sensitivity with polarized X-rays, and high coherence have shown great potential for chemically specific structural characterization for many classes of materials

    P3HT-Based Solar Cells: Structural Properties and Photovoltaic Performance

    Full text link
    Each year we are bombarded with B.Sc. and Ph.D. applications from students that want to improve the world. They have learned that their future depends on changing the type of fuel we use and that solar energy is our future. The hope and energy of these young people will transform future energy technologies, but it will not happen quickly. Organic photovoltaic devices are easy to sketch, but the materials, processing steps, and ways of measuring the properties of the materials are very complicated. It is not trivial to make a systematic measurement that will change the way other research groups think or practice. In approaching this chapter, we thought about what a new researcher would need to know about organic photovoltaic devices and materials in order to have a good start in the subject. Then, we simplified that to focus on what a new researcher would need to know about poly-3-hexylthiophene:phenyl-C61-butyric acid methyl ester blends (P3HT: PCBM) to make research progress with these materials. This chapter is by no means authoritative or a compendium of all things on P3HT:PCBM. We have selected to explain how the sample fabrication techniques lead to control of morphology and structural features and how these morphological features have specific optical and electronic consequences for organic photovoltaic device applications

    Photophysics and Photocurrent Generation in Polythiophene/Polyfluorene Copolymer Blends

    No full text
    Here, studies on the evolution of photophysics and device performance with annealing of blends of poly(3-hexylthiophene) with the two polyfluorene copolymers poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)2, 1,3-benzothiadiazole]-2',2"-diyl) (F8TBT) and poly(9,9-dioctylfluorene- cobenzothiadiazole) (F8BT) are reported. In blends with F8TBT, P3HT is found to reorganize at low annealing temperatures (100 °C or below), evidenced by a redshift of both absorption and photoluminescence (PL), and by a decrease in PL lifetime. Annealing to 140°C, however, is found to optimize device performance, accompanied by an increase in PL efficiency and lifetime. Crazing-incidence small-angle X-ray scattering is also performed to study the evolution in film nanomorphology with annealing, with the 140°C-annealed film showing enhanced phase separation. It is concluded that reorganization of P3HT alone is not sufficient to optimize device performance but must also be accompanied by a coarsening of the morphology to promote charge separation. The shape of the photocurrent action spectra of P3HT:F8TBT devices is also studied, aided by optical modeling of the absorption spectrum of the blend in a device structure. Changes in the shape of the photocurrent action spectra with annealing are observed, and these are attributed to changes in the relative contribution of each polymer to photocurrent as morphology and polymer conformation evolve. In particular, in as-spun films from xylene, photocurrent is preferentially generated from ordered P3HT segments attributed to the increased charge separation efficiency in ordered P3HT compared to disordered P3HT. For optimized devices, photocurrent is efficiently generated from both P3HT and F8TBT. In contrast to blends with F8TBT, P3HT is only found to reorganize in blends with F8BT at annealing temperatures of over 200 °C. The low efficiency of the P3HT:F8BT system can then be attributed to poor charge generation and separation efficiencies that result from the failure of P3HT to reorganize. © 2009 WILEY-VCH Verlag GmbH and Co. KGaA

    Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells

    Get PDF
    This work was supported by the Engineering and Physical Sciences Research Council (grant number EP/I013288/1) and from the European Union Seventh Framework Programme under grant agreement 321305.The morphology of bulk heterojunction organic photovoltaic cells defines many of the device performance characteristics. Measuring the morphology is challenging due to the small length scales and low contrast between organic materials. Here we have utilised nanoscale photocurrent mapping, ultrafast fluorescence and exciton diffusion to observe the detailed morphology of a high performance blend. We show that optimised blends consist of elongated fullerene-rich and polymer-rich fibre-like domains which are 10-50 nm wide and 200-400 nm long. These elongated domains provide a concentration gradient for directional charge diffusion which helps extraction of charge pairs with 80% efficiency. In contrast, blends with agglomerated fullerene spheres show a much lower efficiency of charge extraction of ~45% which is attributed to poor electron and hole transport. Our results show that formation of narrow and elongated domains are desirable in bulk heterojunction solar cells.Publisher PDFPeer reviewe

    Improved Power Conversion Efficiency of P3HT:PCBM Organic Solar Cells by Strong Spin-Orbit Coupling-Induced Delayed Fluorescence

    No full text
    Solution-processed organic bulk heterojunction solar cells based on poly(3-hexylthiophene) (P3HT) blended with [6,6]-phenyl-C60_{60}-butyric acid methyl ester are doped with different concentrations of iron (II,III) oxide nanoparticles (Fe3_{3}O4_{4}). The power conversion efficiency of the devices doped at low concentrations is improved up to 11%. The improvement finds its origin in a lower recombination current, which is a consequence of an increased effective exciton lifetime according to the J–V characteristics and the optoelectronical analysis of the films. The increase in performance cannot be attributed to changes in morphology or crystallinity according to grazing-incidence X-ray scattering experiments. The evolution of the solar cell short-circuit current at low doping concentrations is related to variations in the arrangement of the crystalline regions of P3HT. For high doping concentrations (above 1.0 wt%) the performance of the solar cell decays rapidly, ascribed to the increased leakage currents in the device caused by the presence of nanoparticles
    corecore