10 research outputs found

    Seed Mucilage Improves Seedling Emergence of a Sand Desert Shrub

    Get PDF
    The success of seedling establishment of desert plants is determined by seedling emergence response to an unpredictable precipitation regime. Sand burial is a crucial and frequent environmental stress that impacts seedling establishment on sand dunes. However, little is known about the ecological role of seed mucilage in seedling emergence in arid sandy environments. We hypothesized that seed mucilage enhances seedling emergence in a low precipitation regime and under conditions of sand burial. In a greenhouse experiment, two types of Artemisia sphaerocephala achenes (intact and demucilaged) were exposed to different combinations of burial depth (0, 5, 10, 20, 40 and 60 mm) and irrigation regimes (low, medium and high, which simulated the precipitation amount and frequency in May, June and July in the natural habitat, respectively). Seedling emergence increased with increasing irrigation. It was highest at 5 mm sand burial depth and ceased at burial depths greater than 20 mm in all irrigation regimes. Mucilage significantly enhanced seedling emergence at 0, 5 and 10 mm burial depths in low irrigation, at 0 and 5 mm burial depths in medium irrigation and at 0 and 10 mm burial depths in high irrigation. Seed mucilage also reduced seedling mortality at the shallow sand burial depths. Moreover, mucilage significantly affected seedling emergence time and quiescence and dormancy percentages. Our findings suggest that seed mucilage plays an ecologically important role in successful seedling establishment of A. sphaerocephala by improving seedling emergence and reducing seedling mortality in stressful habitats of the sandy desert environment

    Population biology of salt marsh and sand dune annuals

    No full text
    Annuals represent a significant component of the vegetation of coastal salt marshes and sand dunes. From many points of view, the two habitats might appear to have little in common. Yet both are characterized by episodes of low water potential, marked spatial and temporal heterogeneity and a zonation which, within certain limits, reflects successional change. There are also similarities of distribution. Annuals are dominant usually in the pioneer stages; the Salicornia-dominated low marsh areas are perhaps analogues with strandline ephemeral populations (e.g. Cakile maritima) on the fore-dunes. In mature stages, annuals are associated with small gaps in the matrix of perennials, at least some of these arising from drought or disturbance. Nevertheless populations can reach very high densities. The most striking contrast is phenological; only summer annuals are found on marshes, whereas winter annuals predominate on dunes (except for the strandline). Similarly there is a difference in species richness. Rather few species of annual are typical of marshes while a great many are found on dunes. Properties of the seed bank, survival, reproduction and population regulation are compared in marsh and dune annuals, with special reference to Cakile, Salicornia, Rhinanthus and Vulpia. Interpretations are suggested which take account of environmental predictability and heterogeneity. Finally, the general applicability of simple mathematical models of these populations in the different coastal habitats is considered

    Guard cell photosynthesis and stomatal function

    No full text
    Chloroplasts are a key feature of most guard cells; however, the function of these organelles in stomatal responses has been a subject of debate. This review examines evidence for and against a role of guard cell chloroplasts in stimulating stomatal opening. Controversy remains over the extent to which guard cell Calvin cycle activity contributes to stomatal regulation. However, this is only one of four possible functions of guard cell chloroplasts; other roles include supply of ATP, blue-light signalling and starch storage. Evidence exists for all these mechanisms, but is highly dependent upon species and growth/measurement conditions, with inconsistencies between different laboratories reported. Significant plasticity and extreme flexibility in guard cell osmoregulatory, signalling and sensory pathways may be one explanation. The use of chlorophyll a fluorescence analysis of individual guard cells is discussed in assessing guard and mesophyll cell physiology in relation to stomatal function. Developments in transgenic and molecular techniques have recently provided interesting, albeit contrasting, data regarding the role of these highly conserved organelles in stomatal function. Recent studies examining the link between mesophyll photosynthesis and stomatal conductance are discussed. An enhanced understanding of these processes may be fundamental in generating crop plants with greater water use efficiencies, capable of combating future climatic changes. © The Author (2008)

    The influence of hormones and other naturally occurring compounds on stomatal behaviour

    No full text

    Stomatal responses to environmental factors

    No full text

    The Sri Lankan ‘Microlithic’ Tradition c. 38,000 to 3,000 Years Ago: Tropical Technologies and Adaptations of Homo sapiens at the Southern Edge of Asia

    No full text
    corecore