102 research outputs found

    Prokineticin 2 Regulates the Electrical Activity of Rat Suprachiasmatic Nuclei Neurons

    Get PDF
    Neuropeptide signaling plays roles in coordinating cellular activities and maintaining robust oscillations within the mammalian suprachiasmatic nucleus (SCN). Prokineticin2 (PK2) is a signaling molecule from the SCN and involves in the generation of circadian locomotor activity. Prokineticin receptor 2 (PKR2), a receptor for PK2, has been shown to be expressed in the SCN. However, very little is known about the cellular action of PK2 within the SCN. In the present study, we investigated the effect of PK2 on spontaneous firing and miniature inhibitory postsynaptic currents (mIPSCs) using whole cell patch-clamp recording in the SCN slices. PK2 dose-dependently increased spontaneous firing rates in most neurons from the dorsal SCN. PK2 acted postsynaptically to reduce γ-aminobutyric acid (GABA)-ergic function within the SCN, and PK2 reduced the amplitude but not frequency of mIPSCs. Furthermore, PK2 also suppressed exogenous GABA-induced currents. And the inhibitory effect of PK2 required PKC activation in the postsynaptic cells. Our data suggest that PK2 could alter cellular activities within the SCN and may influence behavioral and physiological rhythms

    Influence of Cytokines on HIV-Specific Antibody-Dependent Cellular Cytotoxicity Activation Profile of Natural Killer Cells

    Get PDF
    There is growing interest in HIV-specific antibody-dependent cellular cytotoxicity (ADCC) as an effective immune response to prevent or control HIV infection. ADCC relies on innate immune effector cells, particularly NK cells, to mediate control of virus-infected cells. The activation of NK cells (i.e., expression of cytokines and/or degranulation) by ADCC antibodies in serum is likely subject to the influence of other factors that are also present. We observed that the HIV-specific ADCC antibodies, within serum samples from a panel of HIV-infected individuals induced divergent activation profiles of NK cells from the same donor. Some serum samples primarily induced NK cell cytokine expression (i.e., IFNγ), some primarily initiated NK cell expression of a degranulation marker (CD107a) and others initiated a similar magnitude of responses across both effector functions. We therefore evaluated a number of HIV-relevant soluble factors for their influence on the activation of NK cells by HIV-specific ADCC antibodies. Key findings were that the cytokines IL-15 and IL-10 consistently enhanced the ability of NK cells to respond to HIV-specific ADCC antibodies. Furthermore, IL-15 was demonstrated to potently activate “educated” KIR3DL1+ NK cells from individuals carrying its HLA-Bw4 ligand. The cytokine was also demonstrated to activate “uneducated” KIR3DL1+ NK cells from HLA-Bw6 homozygotes, but to a lesser extent. Our results show that cytokines influence the ability of NK cells to respond to ADCC antibodies in vitro. Manipulating the immunological environment to enhance the potency of NK cell-mediated HIV-specific ADCC effector functions could be a promising immunotherapy or vaccine strategy

    Effects of Topically Administered Neuroprotective Drugs in Early Stages of Diabetic Retinopathy:Results of the EUROCONDOR Clinical Trial

    Get PDF
    The primary objective of this study was to assess whether the topical administration of two neuroprotective drugs (brimonidine and somatostatin) could prevent or arrest retinal neurodysfunction in patients with type 2 diabetes. For this purpose, adults aged between 45 and 75 years with a diabetes duration ≥5 years and an Early Treatment of Diabetic Retinopathy Study (ETDRS) level of ≤35 were randomly assigned to one of three arms: placebo, somatostatin, or brimonidine. The primary outcome was the change in implicit time (IT) assessed by multifocal electroretinography between baseline and at the end of follow-up (96 weeks). There were 449 eligible patients allocated to brimonidine (n = 152), somatostatin (n = 145), or placebo (n = 152). When the primary end point was evaluated in the whole population, we did not find any neuroprotective effect of brimonidine or somatostatin. However, in the subset of patients (34.7%) with preexisting retinal neurodysfunction, IT worsened in the placebo group (P < 0.001) but remained unchanged in the brimonidine and somatostatin groups. In conclusion, the topical administration of the selected neuroprotective agents appears useful in preventing the worsening of preexisting retinal neurodysfunction. This finding points to screening retinal neurodysfunction as a critical issue to identify a subset of patients in whom neuroprotective treatment might be of benefit

    Ligand-dependent Hedgehog pathway activation in Rhabdomyosarcoma : the oncogenic role of the ligands

    Get PDF
    Altres ajuts: This work was supported by grants from Institut Català d'Oncologia (ICO), Instituto de Salud Carlos III (RTICC-RD12/0036/0016, /0020, /0035, /0057; and PI14/00647), Fundació A BOSCH, Fundació Amics Joan Petit, ajuts predoctorals del VHIR and RIS3CAT grants COMRDI15-1-0014 (ACCIÓ and FEDER).Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children. The Hedgehog (HH) pathway is known to develop an oncogenic role in RMS. However, the molecular mechanism that drives activation of the pathway in RMS is not well understood. The expression of HH ligands was studied by qPCR, western blot and immunohistochemistry. Functional and animal model studies were carried out with cells transduced with shRNAs against HH ligands or treated with HH-specific inhibitors (Vismodegib and MEDI-5304). Finally, the molecular characterisation of an off-target effect of Vismodegib was also made. The results showed a prominent expression of HH ligands supporting an autocrine ligand-dependent activation of the pathway. A comparison of pharmacologic Smoothened inhibition (Vismodegib) and HH ligand blocking (MEDI-5304) is also provided. Interestingly, a first description of pernicious off-target effect of Vismodegib is also reported. The clarification of the HH pathway activation mechanism in RMS opens a door for targeted therapies against HH ligands as a possible alternative in the future development of better treatment protocols. Moreover, the description of a pernicious off-target effect of Vismodegib, via unfolded protein response activation, may mechanistically explain its previously reported inefficiency in several ligand-dependent cancers

    Switching bipolar disorder patients treated with clozapine to another antipsychotic medication: a mirror image study

    No full text
    Petru Ifteni,1,2 Andreea Teodorescu,1,2 Marius Alexandru Moga,1 Alina Mihaela Pascu,1 Roxana Steliana Miclaus1,2 1Faculty of Medicine, Transilvania University of Brasov, Brasov, Romania; 2Clinical Hospital of Psychiatry and Neurology Brasov, Brasov, Romania Abstract: Bipolar disorder (BD) is associated with periodic symptom exacerbations, leading to functional impairment, and increased risk of suicide. Although clozapine has never been approved for the treatment of BD, it is occasionally used in severe mania. The aim of the study is to evaluate the risks and benefits of switching clozapine in remitted BD patients. This is an observational, mirror image study of 62 consecutive remitted BD outpatients treated with clozapine. Twenty-five patients were switched to another antipsychotic following a change in a drug reimbursement rule, while 37 continued on clozapine. The mean time in remission was shorter for the switched group (9.2&plusmn;4 months vs 13&plusmn;6 months, P=0.018), and the number of patients who relapsed was larger (n=21 vs n=8, P&lt;0.0001). The results suggest that switching from clozapine to another antipsychotic may increase the risk of relapses in remitted patients with BD. Keywords: clozapine, bipolar disorder, relapse, switch, cos
    corecore