42 research outputs found

    The Protein Phosphatase 7 Regulates Phytochrome Signaling in Arabidopsis

    Get PDF
    The psi2 mutant of Arabidopsis displays amplification of the responses controlled by the red/far red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) but no apparent defect in blue light perception. We found that loss-of-function alleles of the protein phosphatase 7 (AtPP7) are responsible for the light hypersensitivity in psi2 demonstrating that AtPP7 controls the levels of phytochrome signaling. Plants expressing reduced levels of AtPP7 mRNA display reduced blue-light induced cryptochrome signaling but no noticeable deficiency in phytochrome signaling. Our genetic analysis suggests that phytochrome signaling is enhanced in the AtPP7 loss of function alleles, including in blue light, which masks the reduced cryptochrome signaling. AtPP7 has been found to interact both in yeast and in planta assays with nucleotide-diphosphate kinase 2 (NDPK2), a positive regulator of phytochrome signals. Analysis of ndpk2-psi2 double mutants suggests that NDPK2 plays a critical role in the AtPP7 regulation of the phytochrome pathway and identifies NDPK2 as an upstream element involved in the modulation of the salicylic acid (SA)-dependent defense pathway by light. Thus, cryptochrome- and phytochrome-specific light signals synchronously control their relative contribution to the regulation of plant development. Interestingly, PP7 and NDPK are also components of animal light signaling systems

    Hypersensitive to Red and Blue 1 and Its Modification by Protein Phosphatase 7 Are Implicated in the Control of Arabidopsis Stomatal Aperture

    Get PDF
    The stomatal pores are located on the plant leaf epidermis and regulate CO2 uptake for photosynthesis and the loss of water by transpiration. Their stomatal aperture therefore affects photosynthesis, water use efficiency, and agricultural crop yields. Blue light, one of the environmental signals that regulates the plant stomatal aperture, is perceived by the blue/UV-A light-absorbing cryptochromes and phototropins. The signal transduction cascades that link the perception of light to the stomatal opening response are still largely unknown. Here, we report two new players, Hypersensitive to Red and Blue 1 (HRB1) and Protein Phosphatase 7 (PP7), and their genetic and biochemical interactions in the control of stomatal aperture. Mutations in either HRB1 or PP7 lead to the misregulation of the stomatal aperture and reduce water loss under blue light. Both HRB1 and PP7 are expressed in the guard cells in response to a light-to-dark or dark-to-light transition. HRB1 interacts with PP7 through its N-terminal ZZ-type zinc finger motif and requires a functional PP7 for its stomatal opening response. HRB1 is phosphorylated in vivo, and PP7 can dephosphorylate HRB1. HRB1 is mostly dephosphorylated in a protein complex of 193 kDa in the dark, and blue light increases complex size to 285 kDa. In the pp7 mutant, this size shift is impaired, and HRB1 is predominately phosphorylated. We propose that a modification of HRB1 by PP7 under blue light is essential to acquire a proper conformation or to bring in new components for the assembly of a functional HRB1 protein complex. Guard cells control stomatal opening in response to multiple environmental or biotic stimuli. This study may furnish strategies that allow plants to enjoy the advantages of both constitutive and ABA-induced protection under water-limiting conditions

    A tissue-like platform for studying engineered quiescent human T-cells' interactions with dendritic cells

    No full text
    Research in the field of human immunology is restricted by the lack of a system that reconstitutes the in-situ activation dynamics of quiescent human antigen-specific T-cells interacting with dendritic cells. Here we report a tissue-like system that recapitulates the dynamics of engineered primary human immune cell. Our approach facilitates real-time single cell manipulations, tracking of interactions and functional responses complemented by population-based measurements of cytokines, activation status and proliferation. As a proof of concept, we recapitulate immunological phenomenon such as CD4 help to CD8 T-cells through enhanced maturation of DCs and effect of PD-1 checkpoint blockades. In addition, we characterise unique dynamics of T-cell/DC interactions as a function of antigen affinity

    A dynamic CD2 rich compartment at the outer edge of the immunological synapse boosts and integrates signals

    No full text
    The CD2–CD58 recognition system promotes adhesion and signaling and counters exhaustion in human T cells. We found that CD2 localized to the outer edge of the mature immunological synapse, with cellular or artificial APC, in a pattern we refer to as a ‘CD2 corolla’. The corolla captured engaged CD28, ICOS, CD226 and SLAM-F1 co-stimulators. The corolla amplified active phosphorylated Src-family kinases (pSFK), LAT and PLC-γ over T cell receptor (TCR) alone. CD2–CD58 interactions in the corolla boosted signaling by 77% as compared with central CD2–CD58 interactions. Engaged PD-1 invaded the CD2 corolla and buffered CD2-mediated amplification of TCR signaling. CD2 numbers and motifs in its cytoplasmic tail controlled corolla formation. CD8+ tumor-infiltrating lymphocytes displayed low expression of CD2 in the majority of people with colorectal, endometrial or ovarian cancer. CD2 downregulation may attenuate antitumor T cell responses, with implications for checkpoint immunotherapies

    Identification of potentially dangerous glacial lakes in the northern Tien Shan

    Full text link
    Like in many other parts of the world, the glaciers in northern Tien Shan are receding, and the permafrost is thawing. Concomitantly, glacial lakes are developing. Historically, outbursts of these glacial lakes have resulted in severe hazards for infrastructures and livelihood. Multi-temporal space imageries are an ideal means to study and monitor glaciers and glacial lakes over large areas. Geomorphometric analysis and modelling allows to estimate the potential danger for glacial lake outburst floods (GLOFs). This paper presents a comprehensive approach by coupling of remote sensing, geomorphometric analyses aided with GIS modelling for the identification of potentially dangerous glacial lakes. We suggest a classification scheme based on an additive ratio scale in order to prioritise sites for detailed investigations. The identification and monitoring of glacial lakes was carried out semi-automatically using band ratioing and the normalised difference water index (NDWI) based on multi-temporal space imagery from the years 1971 to 2008 using Corona, ASTER and Landsat data. The results were manually edited when required. The probability of the growth of a glacial lake was estimated by analysing glacier changes, glacier motion and slope analysis. A permafrost model was developed based on geomorphometric parameters, solar radiation and regionalised temperature conditions which permitted to assess the influence of potential permafrost thawing. Finally, a GIS-based model was applied to simulate the possibly affected area of lake outbursts. The findings of this study indicate an increasing number and area of glacial lakes in the northern Tien Shan region. We identified several lakes with a medium to high potential for an outburst after a classification according to their outburst probability and their downstream impact. These lakes should be investigated more in detail
    corecore