34 research outputs found

    Diffuse Gamma Rays: Galactic and Extragalactic Diffuse Emission

    Full text link
    "Diffuse" gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived "average" spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.Comment: 32 pages, 28 figures, kapproc.cls. Chapter to the book "Cosmic Gamma-Ray Sources," to be published by Kluwer ASSL Series, Edited by K. S. Cheng and G. E. Romero. More details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm

    Discovery of a Radio Source following the 27 December 2004 Giant Flare from SGR 1806-20

    Full text link
    Over a decade ago it was established that the remarkable high energy transients, known as soft gamma-ray repeaters (SGRs), are a Galactic population and originate from neutron stars with intense (<~ 10^15 G) magnetic fields ("magnetars"). On 27 December 2004 a giant flare (fluence >~ 0.3 erg/cm^2) was detected from SGR 1806-20. Here we report the discovery of a fading radio counterpart. We began a monitoring program from 0.2GHz to 250GHz and obtained a high resolution 21-cm radio spectrum which traces the intervening interstellar neutral Hydrogen clouds. Analysis of the spectrum yields the first direct distance measurement of SGR 1806-20. The source is located at a distance greater than 6.4 kpc and we argue that it is nearer than 9.8 kpc. If true, our distance estimate lowers the total energy of the explosion and relaxes the demands on theoretical models. The energetics and the rapid decay of the radio source are not compatible with the afterglow model that is usually invoked for gamma-ray bursts. Instead we suggest that the rapidly decaying radio emission arises from the debris ejected during the explosion.Comment: 16 pages, 2 figures, submitted to Nature (substantial revisions

    Fungal enzyme sets for plant polysaccharide degradation

    Get PDF
    Enzymatic degradation of plant polysaccharides has many industrial applications, such as within the paper, food, and feed industry and for sustainable production of fuels and chemicals. Cellulose, hemicelluloses, and pectins are the main components of plant cell wall polysaccharides. These polysaccharides are often tightly packed, contain many different sugar residues, and are branched with a diversity of structures. To enable efficient degradation of these polysaccharides, fungi produce an extensive set of carbohydrate-active enzymes. The variety of the enzyme set differs between fungi and often corresponds to the requirements of its habitat. Carbohydrate-active enzymes can be organized in different families based on the amino acid sequence of the structurally related catalytic modules. Fungal enzymes involved in plant polysaccharide degradation are assigned to at least 35 glycoside hydrolase families, three carbohydrate esterase families and six polysaccharide lyase families. This mini-review will discuss the enzymes needed for complete degradation of plant polysaccharides and will give an overview of the latest developments concerning fungal carbohydrate-active enzymes and their corresponding families
    corecore