312 research outputs found

    CAM-related changes in chloroplastic metabolism of Mesembryanthemum crystallinum L.

    Get PDF
    Crassulacean acid metabolism (CAM) is an intriguing metabolic strategy to maintain photosynthesis under conditions of closed stomata. A shift from C3 photosynthesis to CAM in Mesembryanthemum crystallinum plants was induced by high salinity (0.4 M NaCl). In CAM-performing plants, the quantum efficiencies of photosystem II and I were observed to undergo distinct diurnal fluctuations that were characterized by a strong decline at the onset of the day, midday recovery, and an evening drop. The temporal recovery of both photosystems’ efficiency at midday was associated with a more rapid induction of the electron transport rate at PSII. This recovery of the photosynthetic apparatus at midday was observed to be accompanied by extreme swelling of thylakoids. Despite these fluctuations, a persistent effect of CAM was the acceptor side limitation of PSI during the day, which was accompanied by a strongly decreased level of Rubisco protein. Diurnal changes in the efficiency of photosystems were parallel to corresponding changes in the levels of mRNAs for proteins of PSII and PSI reaction centers and for rbcL, reaching a maximum in CAM plants at midday. This might reflect a high demand for new protein synthesis at this time of the day. Hybridization of run-on transcripts with specific probes for plastid genes of M. crystallinum revealed that the changes in plastidic mRNA levels were regulated at the level of transcription

    Brain Potentials Highlight Stronger Implicit Food Memory for Taste than Health and Context Associations

    Get PDF
    Increasingly consumption of healthy foods is advised to improve population health. Reasons people give for choosing one food over another suggest that non-sensory features like health aspects are appreciated as of lower importance than taste. However, many food choices are made in the absence of the actual perception of a food's sensory properties, and therefore highly rely on previous experiences of similar consumptions stored in memory. In this study we assessed the differential strength of food associations implicitly stored in memory, using an associative priming paradigm. Participants (N = 30) were exposed to a forced-choice picture-categorization task, in which the food or non-food target images were primed with either non-sensory or sensory related words. We observed a smaller N400 amplitude at the parietal electrodes when categorizing food as compared to non-food images. While this effect was enhanced by the presentation of a food-related word prime during food trials, the primes had no effect in the non-food trials. More specifically, we found that sensory associations are stronger implicitly represented in memory as compared to non-sensory associations. Thus, this study highlights the neuronal mechanisms underlying previous observations that sensory associations are important features of food memory, and therefore a primary motive in food choice.</p

    Lung macrophage scavenger receptor SR-A6 (MARCO) is an adenovirus type-specific virus entry receptor

    Get PDF
    <div><p>Macrophages are a diverse group of phagocytic cells acting in host protection against stress, injury, and pathogens. Here, we show that the scavenger receptor SR-A6 is an entry receptor for human adenoviruses in murine alveolar macrophage-like MPI cells, and important for production of type I interferon. Scavenger receptors contribute to the clearance of endogenous proteins, lipoproteins and pathogens. Knockout of SR-A6 in MPI cells, anti-SR-A6 antibody or the soluble extracellular SR-A6 domain reduced adenovirus type-C5 (HAdV-C5) binding and transduction. Expression of murine SR-A6, and to a lower extent human SR-A6 boosted virion binding to human cells and transduction. Virion clustering by soluble SR-A6 and proximity localization with SR-A6 on MPI cells suggested direct adenovirus interaction with SR-A6. Deletion of the negatively charged hypervariable region 1 (HVR1) of hexon reduced HAdV-C5 binding and transduction, implying that the viral ligand for SR-A6 is hexon. SR-A6 facilitated macrophage entry of HAdV-B35 and HAdV-D26, two important vectors for transduction of hematopoietic cells and human vaccination. The study highlights the importance of scavenger receptors in innate immunity against human viruses.</p></div

    Nucleo-cytoplasmic transport of proteins and RNA in plants

    Get PDF
    Merkle T. Nucleo-cytoplasmic transport of proteins and RNA in plants. Plant Cell Reports. 2011;30(2):153-176.Transport of macromolecules between the nucleus and the cytoplasm is an essential necessity in eukaryotic cells, since the nuclear envelope separates transcription from translation. In the past few years, an increasing number of components of the plant nuclear transport machinery have been characterised. This progress, although far from being completed, confirmed that the general characteristics of nuclear transport are conserved between plants and other organisms. However, plant-specific components were also identified. Interestingly, several mutants in genes encoding components of the plant nuclear transport machinery were investigated, revealing differential sensitivity of plant-specific pathways to impaired nuclear transport. These findings attracted attention towards plant-specific cargoes that are transported over the nuclear envelope, unravelling connections between nuclear transport and components of signalling and developmental pathways. The current state of research in plants is summarised in comparison to yeast and vertebrate systems, and special emphasis is given to plant nuclear transport mutants
    corecore