3,072 research outputs found

    Ising Dynamics with Damping

    Full text link
    We show for the Ising model that is possible construct a discrete time stochastic model analogous to the Langevin equation that incorporates an arbitrary amount of damping. It is shown to give the correct equilibrium statistics and is then used to investigate nonequilibrium phenomena, in particular, magnetic avalanches. The value of damping can greatly alter the shape of hysteresis loops, and for small damping and high disorder, the morphology of large avalanches can be drastically effected. Small damping also alters the size distribution of avalanches at criticality.Comment: 8 pages, 8 figures, 2 colum

    The Likely Orbital Period of the Ultracompact Low-Mass X-Ray Binary 2S 0918-549

    Full text link
    We report the discovery of the likely orbital period of the ultracompact low-mass X-ray binary (LMXB) 2S 0918-549. Using time-resolved optical photometry carried out with the 8-m Gemini South Telescope, we obtained a 2.4-hr long, Sloan r' light curve of 2S 0918-549 and found a periodic, sinusoidal modulation at 17.4+/-0.1 min with a semiamplitude of 0.015+/-0.002 mag, which we identify as the binary period. In addition to 4U 0513-40 in the globular cluster NGC 1851 and the Galactic disk source 4U 1543-624, 2S 0918-549 is the third member of the ultracompact LMXBs that have orbital periods around 18 min. Our result verifies the suggestion of 2S 0918-549 as an ultracompact binary based on its X-ray and optical spectroscopic properties. Given that the donor in 2S 0918-549 has been suggested to be either a C-O or He white dwarf, its likely mass and radius are around 0.024--0.029 M_sun and 0.03--0.032 R_sun, respectively, for the former case and 0.034--0.039 M_sun and 0.033--0.035 R_sun for the latter case. If the optical modulation arises from X-ray heating of the mass donor, its sinusoidal shape suggests that the binary has a low inclination angle, probably around 10 deg.Comment: 5 pages, 5 figures, accepted for publication in Ap

    Realisation of a programmable two-qubit quantum processor

    Full text link
    The universal quantum computer is a device capable of simulating any physical system and represents a major goal for the field of quantum information science. Algorithms performed on such a device are predicted to offer significant gains for some important computational tasks. In the context of quantum information, "universal" refers to the ability to perform arbitrary unitary transformations in the system's computational space. The combination of arbitrary single-quantum-bit (qubit) gates with an entangling two-qubit gate is a gate set capable of achieving universal control of any number of qubits, provided that these gates can be performed repeatedly and between arbitrary pairs of qubits. Although gate sets have been demonstrated in several technologies, they have as yet been tailored toward specific tasks, forming a small subset of all unitary operators. Here we demonstrate a programmable quantum processor that realises arbitrary unitary transformations on two qubits, which are stored in trapped atomic ions. Using quantum state and process tomography, we characterise the fidelity of our implementation for 160 randomly chosen operations. This universal control is equivalent to simulating any pairwise interaction between spin-1/2 systems. A programmable multi-qubit register could form a core component of a large-scale quantum processor, and the methods used here are suitable for such a device.Comment: 7 pages, 4 figure

    Thermodynamic entropy of a many body energy eigenstate

    Full text link
    It is argued that a typical many body energy eigenstate has a well defined thermodynamic entropy and that individual eigenstates possess thermodynamic characteristics analogous to those of generic isolated systems. We examine large systems with eigenstate energies equivalent to finite temperatures. When quasi-static evolution of a system is adiabatic (in the quantum mechanical sense), two coupled subsystems can transfer heat from one subsystem to another yet remain in an energy eigenstate. To explicitly construct the entropy from the wave function, degrees of freedom are divided into two unequal parts. It is argued that the entanglement entropy between these two subsystems is the thermodynamic entropy per degree of freedom for the smaller subsystem. This is done by tracing over the larger subsystem to obtain a density matrix, and calculating the diagonal and off-diagonal contributions to the entanglement entropy.Comment: 18 page

    Quantum Computation with Coherent Spin States and the Close Hadamard Problem

    Full text link
    We study a model of quantum computation based on the continuously-parameterized yet finite-dimensional Hilbert space of a spin system. We explore the computational powers of this model by analyzing a pilot problem we refer to as the close Hadamard problem. We prove that the close Hadamard problem can be solved in the spin system model with arbitrarily small error probability in a constant number of oracle queries. We conclude that this model of quantum computation is suitable for solving certain types of problems. The model is effective for problems where symmetries between the structure of the information associated with the problem and the structure of the unitary operators employed in the quantum algorithm can be exploited.Comment: RevTeX4, 13 pages with 8 figures. Accepted for publication in Quantum Information Processing. Article number: s11128-015-1229-

    Postponement of dark-count effects in practical quantum key-distribution by two-way post-processing

    Full text link
    The influence of imperfections on achievable secret-key generation rates of quantum key distribution protocols is investigated. As examples of relevant imperfections, we consider tagging of Alice's qubits and dark counts at Bob's detectors, while we focus on a powerful eavesdropping strategy which takes full advantage of tagged signals. It is demonstrated that error correction and privacy amplification based on a combination of a two-way classical communication protocol and asymmetric Calderbank-Shor-Steane codes may significantly postpone the disastrous influence of dark counts. As a result, the distances are increased considerably over which a secret key can be distributed in optical fibres reliably. Results are presented for the four-state, the six-state, and the decoy-state protocols.Comment: Fully revised version (12 pages and 8 figures). Improved figures and discussion added. To appear in Eur. Phys. J.

    Accurate first-principle equation of state for the One-Component Plasma

    Full text link
    Accurate "first-principle" expressions for the excess free energy FexF_{ex} and internal energy UexU_{ex} of the classical one-component plasma (OCP) are obtained. We use the Hubbard-Schofield transformation that maps the OCP Hamiltonian onto the Ising-like Hamiltonian, with coefficients expressed in terms of equilibrium correlation functions of a reference system. We use the ideal gas as a reference system for which all the correlation functions are known. Explicit calculations are performed with the high-order terms in the Ising-like Hamiltonian omitted. For small values of the plasma parameter Γ\Gamma the Debye-Huckel result for FexF_{ex} and UexU_{ex} is recovered. For large Γ\Gamma these depend linearly on Γ\Gamma in accordance with the Monte Carlo findings for the OCP. The MC data for the internal energy are reproduced fairly well by the obtained analytical expression.Comment: 15 pages, 2 figures, to appear in Contrib. Plasma Phys., v.38 N4, (1998

    A note on entropic uncertainty relations of position and momentum

    Full text link
    We consider two entropic uncertainty relations of position and momentum recently discussed in literature. By a suitable rescaling of one of them, we obtain a smooth interpolation of both for high-resolution and low-resolution measurements respectively. Because our interpolation has never been mentioned in literature before, we propose it as a candidate for an improved entropic uncertainty relation of position and momentum. Up to now, the author has neither been able to falsify nor prove the new inequality. In our opinion it is a challenge to do either one.Comment: 2 pages, 2 figures, 2 references adde

    The SuperCOSMOS Sky Survey. Paper III: Astrometry

    Get PDF
    In this, the third in a series of three papers concerning the SuperCOSMOS Sky Survey, we describe the astrometric properties of the database. We describe the algorithms employed in the derivation of the astrometric parameters of the data, and demonstrate their accuracies by comparison with external datasets using the first release of data, the South Galactic Cap survey. We show that the celestial coordinates, which are tied to the International Celestial Reference Frame via the Tycho-2 reference catalogue, are accurate to better than +/- 0.2 arcsec at J,R=19,18 rising to +/- 0.3 arcsec at J,R=22,21 with positional dependent systematic effects from bright to faint magnitudes at the +/- 0.1 arcsec level. The proper motion measurements are shown to be accurate to typically +/- 10 mas/yr at J,R=19,18 rising to +/- 50 mas/yr at J,R=22,21 and are tied to zero using the extragalactic reference frame. We show that the zeropoint errors in the proper motions are 17 and are no larger than 10 mas/yr for R < 17 mas/yr.Comment: 15 pages, 12 figures; accepted for publication in MNRA
    • 

    corecore