183 research outputs found

    Discrete-Event Simulation for Performance Evaluation and Improvement of Gynecology Outpatient Departments: A Case Study in the Public Sector

    Get PDF
    Gynecology outpatient units are in charge of treating different gynecological diseases such as tumorous, cancer, urinary incontinence, gynecological pain, and abnormal discharge. On-time attention is thus needed to avoid severe complications, patient dissatisfaction, and elevated healthcare costs. There is then an urgent need for assessing whether the gynecology outpatient departments are cost-effective and what interventions are required for improving clinical outcomes. Despite this context, the studies directly concentrating on diagnosis and improvement of these departments are widely limited. To address these concerns, this paper aims to provide a Discrete-event Simulation (DES) modelling framework to help healthcare managers gain a better understanding of the gynecology outpatient services and evaluate improvement strategies. First, the patient journey through the gynecology outpatient service is mapped. To correctly represent the system uncertainty, collected data is then processed through input analysis. Third, the data is used to model and simulate the real gynecology outpatient unit. This model is later validated to determine whether it is statistically equivalent to the real system. After this, using performance metrics derived from the simulation model, the gynecology outpatient department is analyzed to identify potential improvements. We finally pretest potential interventions to define their viability during implementation. A case study of a mixed-patient type environment in a public gynecology outpatient unit is presented to verify the applicability of the proposed methodology. The results evidenced that appointment lead times could be efficiently reduced using this approach. © 2019, Springer Nature Switzerland AG

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package

    Measurement of νˉμ\bar{\nu}_{\mu} and νμ\nu_{\mu} charged current inclusive cross sections and their ratio with the T2K off-axis near detector

    Get PDF
    We report a measurement of cross section σ(νμ+nucleusμ+X)\sigma(\nu_{\mu}+{\rm nucleus}\rightarrow\mu^{-}+X) and the first measurements of the cross section σ(νˉμ+nucleusμ++X)\sigma(\bar{\nu}_{\mu}+{\rm nucleus}\rightarrow\mu^{+}+X) and their ratio R(σ(νˉ)σ(ν))R(\frac{\sigma(\bar \nu)}{\sigma(\nu)}) at (anti-)neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K νˉ/ν\bar{\nu}/\nu-flux, for the detector target material (mainly Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory frame kinematics of θμ\theta_{\mu}500 MeV/c. The results are σ(νˉ)=(0.900±0.029(stat.)±0.088(syst.))×1039\sigma(\bar{\nu})=\left( 0.900\pm0.029{\rm (stat.)}\pm0.088{\rm (syst.)}\right)\times10^{-39} and $\sigma(\nu)=\left( 2.41\ \pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}inunitsofcm in units of cm^{2}/nucleonand/nucleon and R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)= 0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure

    A simulation modelling toolkit for organising outpatient dialysis services during the COVID-19 pandemic

    Get PDF
    This study presents two simulation modelling tools to support the organisation of networks of dialysis services during the COVID-19 pandemic. These tools were developed to support renal services in the South of England (the Wessex region caring for 650 dialysis patients), but are applicable elsewhere. A discrete-event simulation was used to model a worst case spread of COVID-19, to stress-test plans for dialysis provision throughout the COVID-19 outbreak. We investigated the ability of the system to manage the mix of COVID-19 positive and negative patients, the likely effects on patients, outpatient workloads across all units, and inpatient workload at the centralised COVID-positive inpatient unit. A second Monte-Carlo vehicle routing model estimated the feasibility of patient transport plans. If current outpatient capacity is maintained there is sufficient capacity in the South of England to keep COVID-19 negative/recovered and positive patients in separate sessions, but rapid reallocation of patients may be needed. Outpatient COVID-19 cases will spillover to a secondary site while other sites will experience a reduction in workload. The primary site chosen to manage infected patients will experience a significant increase in outpatients and inpatients. At the peak of infection, it is predicted there will be up to 140 COVID-19 positive patients with 40 to 90 of these as inpatients, likely breaching current inpatient capacity. Patient transport services will also come under considerable pressure. If patient transport operates on a policy of one positive patient at a time, and two-way transport is needed, a likely scenario estimates 80 ambulance drive time hours per day (not including fixed drop-off and ambulance cleaning times). Relaxing policies on individual patient transport to 2-4 patients per trip can save 40-60% of drive time. In mixed urban/rural geographies steps may need to be taken to temporarily accommodate renal COVID-19 positive patients closer to treatment facilities.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.This article presents independent research funded by the National Institute for Health Research (NIHR) Applied Research Collaboration (ARC) South West Peninsula (MA, SL). The views expressed in this publication are those of the author(s) and not necessarily those of the National Health Service, the NIHR or the Department of Health and Social Care. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Blunted endogenous opioid release following an oral amphetamine challenge in pathological gamblers

    Get PDF
    Pathological gambling is a psychiatric disorder and the first recognized behavioral addiction, with similarities to substance use disorders but without the confounding effects of drug-related brain changes. Pathophysiology within the opioid receptor system is increasingly recognized in substance dependence, with higher mu-opioid receptor (MOR) availability reported in alcohol, cocaine and opiate addiction. Impulsivity, a risk factor across the addictions, has also been found to be associated with higher MOR availability. The aim of this study was to characterize baseline MOR availability and endogenous opioid release in pathological gamblers (PG) using [(11)C]carfentanil PET with an oral amphetamine challenge. Fourteen PG and 15 healthy volunteers (HV) underwent two [(11)C]carfentanil PET scans, before and after an oral administration of 0.5 mg/kg of d-amphetamine. The change in [(11)C]carfentanil binding between baseline and post-amphetamine scans (ΔBPND) was assessed in 10 regions of interest (ROI). MOR availability did not differ between PG and HV groups. As seen previously, oral amphetamine challenge led to significant reductions in [(11)C]carfentanil BPND in 8/10 ROI in HV. PG demonstrated significant blunting of opioid release compared with HV. PG also showed blunted amphetamine-induced euphoria and alertness compared with HV. Exploratory analysis revealed that impulsivity positively correlated with caudate baseline BPND in PG only. This study provides the first evidence of blunted endogenous opioid release in PG. Our findings are consistent with growing evidence that dysregulation of endogenous opioids may have an important role in the pathophysiology of addictions

    Proposal for an Extended Run of T2K to 20×102120\times10^{21} POT

    Get PDF
    68 pages, 31 figures68 pages, 31 figures68 pages, 31 figuresRecent measurements by the T2K neutrino oscillation experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We propose an extension to the currently approved T2K running from 7.8\times 10^{21}~\mbox{POT} to 20\times 10^{21}~\mbox{POT}, aiming at initial observation of CP violation with 3σ\,\sigma or higher significance for the case of maximum CP violation. The program also contains a measurement of mixing parameters, θ23\theta_{23} and Δm322\Delta m^2_{32}, with a precision of 1.7^\circ or better and 1%, respectively. With accelerator and beamline upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026

    Measurement of ¯νμ and νμ charged current inclusive cross sections and their ratio with the T2K off-axis near detector

    Get PDF
    We report a measurement of cross section σ(νμ+nucleus→μ−+X) and the first measurements of the cross section σ(¯νμ+nucleus→μ++X) and their ratio R(σ(¯ν)σ(ν)) at (anti) neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K ¯ν/ν-flux, for the detector target material (mainly carbon, oxygen, hydrogen and copper) with phase space restricted laboratory frame kinematics of θμ500  MeV/c. The results are σ(¯ν)=(0.900±0.029(stat)±0.088(syst))×10−39 and σ(ν)=(2.41±0.022(stat)±0.231(syst))×10−39 in units of cm2/nucleon and R(σ(¯ν)σ(ν))=0.373±0.012(stat)±0.015(syst)
    corecore