1,574 research outputs found

    The Impact of Female Leadership Style on Team Creativity in Rising English Education Group in China

    Get PDF
    Purpose: Corporate innovation might be slowed by team creativity and other factors. When a company's team creativity is low, innovation suffers, impacting its market competitiveness and technological advancement. Low-creativity teams make more mistakes, slowing down the project and making it more difficult to achieve its goals. Teams who do not innovate will not be able to expand or compete. The impact of female entrepreneurs' leadership styles on team innovation has not been researched in China's education administration. This study will look at how the leadership styles of successful female business owners promote innovative teamwork.   Theoretical framework: This study developed a theoretical model based on the constitutive theory of creativity, with transformational leadership, empowering leadership, authoritative leadership, and participative leadership as independent variables, entrepreneurial team creativity as the dependent variable, team psychological empowerment as the mediating variable, and the nature of the company's business as the moderating variable.   Methodology: This research looks at how strong female leaders help Rise English Educational Organization. This study looks at how different female leadership styles affect group morale, effectiveness, and innovation.   Research, Practical & Social implications: Through a review of existing literature and similar studies, this chapter outlines the theoretical model and related hypotheses of this study and provides a more specific direction for the accompanying empirical investigation. Female team leaders frequently place a high importance on effective communication and collaboration. They promote open dialogue, paying attention, and making valuable comments. These modes of communication make it easier for people to share ideas and collaborate, which is beneficial to team innovation. When their manager is a woman, team members who feel mentally encouraged are more inclined to think imaginatively, take the initiative, and help solve difficulties.   Originality/value: This beneficial relationship between a woman's leadership style and the psychological freedom of the team can encourage team members to be more creative and imaginative. Team psychological strength can help explain the connection between how a woman leads and how creative her team is, but it is not the sole factor influencing team creativity. The objective of the business, the people on the team, and the tools available can all have an impact on team creativity

    Plant and soil microbe responses to light, warming and nitrogen addition in a temperate forest

    Get PDF
    1. Temperate forests across Europe and eastern North America have become denser since the 1950s due to less intensive forest management and global environmental changes such as nitrogen deposition and climate warming. Denser tree canopies result in lower light availability at the forest floor. This shade may buffer the effects of nitrogen deposition and climate warming on understorey plant communities. 2. We conducted an innovative in situ field experiment to study the responses of co-occurring soil microbial and understorey plant communities to nitrogen addition, enhanced light availability and experimental warming in a full-factorial design. 3. We determined the effects of multiple environmental drivers and their interactions on the soil microbial and understorey plant communities, and assessed to what extent the soil microbial and understorey plant communities covary. 4. High light led to lower biomass of the soil microbes (analysed by phospholipid fatty acids), but the soil microbial structure, i.e. the ratio of fungal biomass to bacterial biomass, was not affected by light availability. The composition of the soil bacterial community (analysed by high-throughput sequencing) was affected by both light availability and warming (and their interaction), but not by nitrogen addition. Yet, the number of unique operational taxonomic units was higher in plots with nitrogen addition, and there were significant interactive effects of light and nitrogen addition. Light availability also determined the composition of the plant community; no effects of nitrogen addition and warming were observed. The soil bacterial and plant communities were co-structured, and light availability explained a large part of the variance of this co-structure. 5. We provide robust evidence for the key role of light in affecting both the soil microbial and plant communities in forest understoreys. Our results advocate for more multifactor global change experiments that investigate the mechanism underlying the (in) direct effects of light on the plant-soil continuum in forests

    Detection superiority of 7 T MRI protocol in patients with epilepsy and suspected focal cortical dysplasia

    Get PDF
    In 11 adult patients with suspicion of Focal cortical dysplasia (FCD) on 1.5 T (n = 1) or 3 T (n = 10) magnetic resonance imaging (MRI), 7 T MRI was performed. Visibility, extent, morphological features and delineation were independently rated and subsequently discussed by three observers. Additionally, head-to-head comparisons with corresponding 3 T images were made in the eight patients with a previous 3 T MRI and sustained suspicion of FCD. Comparison with histopathology was done in the five patients that underwent surgery. All lesions, seen at 1.5 and 3 T, were also recognized on 7 T. At 7 T FLAIR highlighted the FCD-like lesions best, whereas T2 and T2* were deemed better suited to review structure and extent of the lesion. Image quality with the used 7 T MRI setup was higher than the quality with the used 3 T MRI setup. In 2 out of 11 patients diagnosis changed, in one after re-evaluation of the images, and in the other based on histopathology. With the used 7 T MRI setup, FCD-like lesions can be detected with more confidence and detail as compared to lower field strength. However, concordance between radiologic diagnosis and final diagnosis seems to be lower than expected

    Evidence for compact cooperatively rearranging regions in a supercooled liquid

    Full text link
    We examine structural relaxation in a supercooled glass-forming liquid simulated by NVE molecular dynamics. Time correlations of the total kinetic energy fluctuations are used as a comprehensive measure of the system's approach to the ergodic equilibrium. We find that, under cooling, the total structural relaxation becomes delayed as compared with the decay of the component of the intermediate scattering function corresponding to the main peak of the structure factor. This observation can be explained by collective movements of particles preserving many-body structural correlations within compact 3D cooperatively rearranging regions.Comment: 8 pages, 4 figure

    Breakdown of Hydrodynamic Transport Theory in the Ordered Phase of Helimagnets

    Full text link
    It is shown that strong fluctuations preclude a hydrodynamic description of transport phenomena in helimagnets, such as MnSi, at T>0. This breakdown of hydrodynamics is analogous to the one in chiral liquid crystals. Mode-mode coupling effects lead to infinite renormalizations of various transport coefficients, and the actual macroscopic description is nonlocal. At T=0 these effects are weakened due to the fluctuation-dissipation theorem, and the renormalizations remain finite. Observable consequences of these results, as manifested in the neutron scattering cross-section, are discussedComment: 4pp., 1 eps figur

    The N-end rule pathway is a sensor of heme

    Get PDF
    The conjugation of arginine, by arginyl-transferase, to N-terminal aspartate, glutamate or oxidized cysteine is a part of the N-end rule pathway of protein degradation. We report that arginyl-transferase of either the mouse or the yeast Saccharomyces cerevisiae is inhibited by hemin (Fe3+-heme). Furthermore, we show that hemin inhibits arginyl-transferase through a redox mechanism that involves the formation of disulfide between the enzyme's Cys-71 and Cys-72 residues. Remarkably, hemin also induces the proteasome-dependent degradation of arginyl-transferase in vivo, thus acting as both a "stoichiometric" and "catalytic" down-regulator of the N-end rule pathway. In addition, hemin was found to interact with the yeast and mouse E3 ubiquitin ligases of the N-end rule pathway. One of substrate-binding sites of the yeast N-end rule's ubiquitin ligase UBR1 targets CUP9, a transcriptional repressor. This site of UBR1 is autoinhibited but can be allosterically activated by peptides that bear destabilizing N-terminal residues and interact with two other substrate-binding sites of UBR1. We show that hemin does not directly occlude the substrate-binding sites of UBR1 but blocks the activation of its CUP9-binding site by dipeptides. The N-end rule pathway, a known sensor of short peptides, nitric oxide, and oxygen, is now a sensor of heme as well. One function of the N-end rule pathway may be to coordinate the activities of small effectors, both reacting to and controlling the redox dynamics of heme, oxygen, nitric oxide, thiols, and other compounds, in part through conditional degradation of specific transcription factors and G protein regulators

    Heavy metal bioaccumulation by the important food plant, olea europaea L., in an ancient metalliferous polluted area of Cyprus

    Get PDF
    Aspects of the bioaccumulation of heavy metals are reviewed and possible evidence of homeostasis is highlighted. Examination and analysis of olive (Olea europaea L.) trees growing in close proximity to a copper dominated spoil tip dating from at least 2000 years BP, on the island of Cyprus, revealed both bioaccumulation and partitioning of copper, lead and zinc in various parts of the tree. A factor to quantify the degree of accumulation is illustrated and a possible seed protective mechanism suggested

    Novel therapies for epilepsy in the pipeline

    Get PDF
    Despite the availability of many antiepileptic drugs (AEDs) (old and newly developed) and, as recently suggested, their optimization in the treatment of patients with uncontrolled seizures, more than 30% of patients with epilepsy continue to experience seizures and have drug-resistant epilepsy; the management of these patients represents a real challenge for epileptologists and researchers. Resective surgery with the best rates of seizure control is not an option for all of them; therefore, research and discovery of new methods of treating resistant epilepsy are of extreme importance. In this article, we will discuss some innovative approaches, such as P-glycoprotein (P-gp) inhibitors, gene therapy, stem cell therapy, traditional and novel antiepileptic devices, precision medicine, as well as therapeutic advances in epileptic encephalopathy in children; these treatment modalities open up new horizons for the treatment of patients with drug-resistant epilepsy

    Critical dynamics of an isothermal compressible non-ideal fluid

    Full text link
    A pure fluid at its critical point shows a dramatic slow-down in its dynamics, due to a divergence of the order-parameter susceptibility and the coefficient of heat transport. Under isothermal conditions, however, sound waves provide the only possible relaxation mechanism for order-parameter fluctuations. Here we study the critical dynamics of an isothermal, compressible non-ideal fluid via scaling arguments and computer simulations of the corresponding fluctuating hydrodynamics equations. We show that, below a critical dimension of 4, the order-parameter dynamics of an isothermal fluid effectively reduces to "model A," characterized by overdamped sound waves and a divergent bulk viscosity. In contrast, the shear viscosity remains finite above two dimensions. Possible applications of the model are discussed.Comment: 19 pages, 7 figures; v3: minor corrections and clarifications; as published in Phys. Rev.
    • …
    corecore