2,834 research outputs found

    Supersymmetric SU(3) X U(1) Gauge Model: Higgs Structure at the Electroweak Scale

    Full text link
    We consider a supersymmetric version of the recently proposed SU(3) X U(1) extended gauge model. We show that it is possible to have only two Higgs doublets at the SU(2) X U(1) energy scale but they are not those of the minimal supersymmetric standard model. In particular, the upper bound on the lightest scalar boson of this model is 4MZsin⁥ΞW4 M_Z \sin \theta_W at tree level and goes up to 189 GeV after radiative corrections.Comment: 9 pages, Univ. of California, Riverside Report No. UCRHEP-T111, June 199

    Tetramethylenedisulfotetramine

    Get PDF
    Tetramethylenedisulfotetramine (CAS 80-12-6), commonly referred to as TETS, was first synthesized in 1933 as a condensation product of sulfamide and formaldehyde. TETS was subsequently used as a rodenticide until banned worldwide in 1991. TETS is, however, still available illegally, primarily in rural China, and is responsible for accidental and intentional poisonings that cause a significant number of human deaths annually. TETS induces convulsive seizures mediated by antagonism of Îł-amino-butyric acid (GABA)-mediated chloride channels. There are no known antidotes for TETS poisoning, and in cases of severe TETS intoxication that progress to status epilepticus, prognosis is poor even with aggressive anti-convulsant treatment

    Spectra of massive QCD dirac operators from random matrix theory: All three chiral symmetry breaking patterns

    Get PDF
    The microscopic spectral eigenvalue correlations of QCD Dirac operators in the presence of dynamical fermions are calculated within the framework of Random Matrix Theory (RMT). Our approach treats the low-energy correlation functions of all three chiral symmetry breaking patterns (labeled by the Dyson index ÎČ = 1, 2 and 4) on the same footing, offering a unifying description of massive QCD Dirac spectra. RMT universality is explicitly proven for all three symmetry classes and the results are compared to the available lattice data for ÎČ = 4

    Unifiable Supersymmetric Left-Right Model with E_6 Particle Content

    Full text link
    A new supersymmetric gauge model is proposed with particle content chosen only from the 27 and 27* representations of E_6. The gauge symmetry SU(3) X SU(2)_L X SU(2)_R X U(1) is realized at the TeV energy scale and the gauge couplings converge to a single value at around 10^{16} GeV. A discrete Z_4 X Z_2 symmetry leads to a generalized definition of lepton number and ensures the absence of tree-level flavor-changing neutral-current interactions at the electroweak energy scale.Comment: 12 pages (1 figure not included), UCRHEP-T129 (July 1994

    Discrete symmetries and isosinglet quarks in low-energy supersymmetry

    Get PDF
    Many extensions of the minimal supersymmetric standard model contain superfields for quarks which are singlets under weak isospin with electric charge -1/3. We explore the possibility that such isosinglet quarks have low or intermediate scale masses, but do not mediate rapid proton decay because of a discrete symmetry. By imposing the discrete gauge anomaly cancellation conditions, we show that the simplest way to achieve this is to extend the Z_3 "baryon parity" of Ibanez and Ross to the isosinglet quark superfields. This can be done in three distinct ways. This strategy is not consistent with grand unification with a simple gauge group, but may find a natural place in superstring-inspired models, for example. An interesting feature of this scenario is that proton decay is absolutely forbidden.Comment: 13 pages, MIT-CTP-2345, NUB-3097-94T

    The flow of plasma in the solar terrestrial environment

    Get PDF
    The overall goal of our NASA Theory Program was to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, with the funding from this NASA program, we concentrated on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we developed unique global models that allowed us to study the coupling between the different regions. These results are highlighted in the next section. Another important aspect of our NASA Theory Program concerned the effect that localized 'structure' had on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkland current patterns) or time variations in these input due to storms and substorms. Also, some of the plasma flows that we predicted with our macroscopic models could be unstable, and another one of our goals was to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another goal of our NASA Theory Program was to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This could involve a detailed comparison of kinetic, semi-kinetic, and hydrodynamic predictions for a given polar wind scenario or it could involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations provides insight into when the various models can be used with confidence

    Universal and non-universal behavior in Dirac spectra

    Get PDF
    We have computed ensembles of complete spectra of the staggered Dirac operator using four-dimensional SU(2) gauge fields, both in the quenched approximation and with dynamical fermions. To identify universal features in the Dirac spectrum, we compare the lattice data with predictions from chiral random matrix theory for the distribution of the low-lying eigenvalues. Good agreement is found up to some limiting energy, the so-called Thouless energy, above which random matrix theory no longer applies. We determine the dependence of the Thouless energy on the simulation parameters using the scalar susceptibility and the number variance.Comment: LATTICE98(confine), 9 pages, 11 figure

    Spectral correlations of the massive QCD Dirac operator at finite temperature

    Get PDF
    We use the graded eigenvalue method, a variant of the supersymmetry technique, to compute the universal spectral correlations of the QCD Dirac operator in the presence of massive dynamical quarks. The calculation is done for the chiral Gaussian unitary ensemble of random matrix theory with an arbitrary Hermitian matrix added to the Dirac matrix. This case is of interest for schematic models of QCD at finite temperature.Comment: 19 pages, no figures, LaTeX (elsart.cls) minor changes, one reference adde

    Possible Z-width probe of a "brane-world" scenario for neutrino masses

    Get PDF
    The possibility that the accurately known value of the Z width might furnish information about the coupling of two neutrinos to the Majoron (Nambu-Goldstone boson of spontaneous lepton number violation) is proposed and investigated in detail. Both the "ordinary" case and the case in which one adopts a "brane" world picture with the Majoron free to travel in extra dimensions are studied. Bounds on the dimensionless coupling constants are obtained, allowing for any number of extra dimensions and any intrinsic mass scale. These bounds may be applied to a variety of different Majoron models. If a technically natural see-saw model is adopted, the predicted coupling constants are far below these upper bounds. In addition, for this natural model, the effect of extra dimensions is to decrease the predicted partial Z width, the increase due to many Kaluza-Klein excitations being compensated by the decrease of their common coupling constant.Comment: RevTeX, 12 pages, 3 figure

    Higher Spin Gravity with Matter in AdS_3 and Its CFT Dual

    Full text link
    We study Vasiliev's system of higher spin gauge fields coupled to massive scalars in AdS_3, and compute the tree level two and three point functions. These are compared to the large N limit of the W_N minimal model, and nontrivial agreements are found. We propose a modified version of the conjecture of Gaberdiel and Gopakumar, under which the bulk theory is perturbatively dual to a subsector of the CFT that closes on the sphere.Comment: 58 pages; typos corrected, references adde
    • 

    corecore