87 research outputs found

    Universal and non-universal behavior in Dirac spectra

    Get PDF
    We have computed ensembles of complete spectra of the staggered Dirac operator using four-dimensional SU(2) gauge fields, both in the quenched approximation and with dynamical fermions. To identify universal features in the Dirac spectrum, we compare the lattice data with predictions from chiral random matrix theory for the distribution of the low-lying eigenvalues. Good agreement is found up to some limiting energy, the so-called Thouless energy, above which random matrix theory no longer applies. We determine the dependence of the Thouless energy on the simulation parameters using the scalar susceptibility and the number variance.Comment: LATTICE98(confine), 9 pages, 11 figure

    Spectrum of the SU(3) Dirac operator on the lattice: Transition from random matrix theory to chiral perturbation theory

    Get PDF
    We calculate complete spectra of the Kogut-Susskind Dirac operator on the lattice in quenched SU(3) gauge theory for various values of coupling constant and lattice size. From these spectra we compute the connected and disconnected scalar susceptibilities and find agreement with chiral random matrix theory up to a certain energy scale, the Thouless energy. The dependence of this scale on the lattice volume is analyzed. In the case of the connected susceptibility this dependence is anomalous, and we explain the reason for this. We present a model of chiral perturbation theory that is capable of describing the data beyond the Thouless energy and that has a common range of applicability with chiral random matrix theory.Comment: 8 pages, RevTeX, 15 .eps figure

    Randomness on the Lattice

    Get PDF
    In this lecture we review recent lattice QCD studies of the statistical properties of the eigenvalues of the QCD Dirac operator. We find that the fluctuations of the smallest Dirac eigenvalues are described by chiral Random Matrix Theories with the global symmetries of the QCD partition function. Deviations from chiral Random Matrix Theory beyond the Thouless energy can be understood analytically by means of partially quenched chiral perturbation theory.Comment: Invited talk at the International Light-Cone Meeting on Non-Perturbative QCD and Hadron Phenomenology, Heidelberg 12-17 June 2000. 12 pages, 7 figures, Late

    Kramers Equation Algorithm with Kogut-Susskind Fermions on Lattice

    Get PDF
    We compare the performance of the Kramers Equation Monte Carlo (KMC) Algorithm with that of the Hybrid Monte Carlo (HMC) algorithm for numerical simulations with dynamical Kogut-Susskind fermions. Using the lattice Gross-Neveu model in 2 space-time dimensions, we calculate the integrated autocorrelation time of different observables at a number of couplings in the scaling region on 16^2 and 32^2 lattices while varying the parameters of the algorithms for optimal performance. In our investigation the performance of KMC is always significantly below than that of HMC for the observables used. We also stress the importance of having a large number of configurations for the accurate estimation of the integrated autocorrelation time.Comment: revised version to appear in Phys. Lett. B, 9 pages, 3 ps figure

    Spectral correlations of the massive QCD Dirac operator at finite temperature

    Get PDF
    We use the graded eigenvalue method, a variant of the supersymmetry technique, to compute the universal spectral correlations of the QCD Dirac operator in the presence of massive dynamical quarks. The calculation is done for the chiral Gaussian unitary ensemble of random matrix theory with an arbitrary Hermitian matrix added to the Dirac matrix. This case is of interest for schematic models of QCD at finite temperature.Comment: 19 pages, no figures, LaTeX (elsart.cls) minor changes, one reference adde

    Comparing lattice Dirac operators with Random Matrix Theory

    Full text link
    We study the eigenvalue spectrum of different lattice Dirac operators (staggered, fixed point, overlap) and discuss their dependence on the topological sectors. Although the model is 2D (the Schwinger model with massless fermions) our observations indicate possible problems in 4D applications. In particular misidentification of the smallest eigenvalues due to non-identification of the topological sector may hinder successful comparison with Random Matrix Theory (RMT).Comment: LATTICE99(topology and confinement), Latex2e using espcrc2.sty, 3 pages, 3 figure

    Can we do better than Hybrid Monte Carlo in Lattice QCD?

    Get PDF
    The Hybrid Monte Carlo algorithm for the simulation of QCD with dynamical staggered fermions is compared with Kramers equation algorithm. We find substantially different autocorrelation times for local and nonlocal observables. The calculations have been performed on the parallel computer CRAY T3D.Comment: Talk presented at LATTICE96(algorithms), LaTeX 3 pages, uses espcrc2, epsf, 2 postscript figure

    Determining F_pi from spectral sum rules

    Get PDF
    We derive spectral sum rules for a system with two quarks coupled to an imaginary isospin chemical potential in the \epsilon regime. The sum rules show an explicit dependence on the pion decay constant which should make it possible to measure F_pi from the eigenvalue spectrum of this particular Dirac operator.Comment: 8 page

    Chiral Random Matrix Model for Critical Statistics

    Full text link
    We propose a random matrix model that interpolates between the chiral random matrix ensembles and the chiral Poisson ensemble. By mapping this model on a non-interacting Fermi-gas we show that for energy differences less than a critical energy EcE_c the spectral correlations are given by chiral Random Matrix Theory whereas for energy differences larger than EcE_c the number variance shows a linear dependence on the energy difference with a slope that depends on the parameters of the model. If the parameters are scaled such that the slope remains fixed in the thermodynamic limit, this model provides a description of QCD Dirac spectra in the universality class of critical statistics. In this way a good description of QCD Dirac spectra for gauge field configurations given by a liquid of instantons is obtained.Comment: 21 pages, 3 figures, Latex; added two references and minor correction

    Small eigenvalues of the SU(3) Dirac operator on the lattice and in Random Matrix Theory

    Get PDF
    We have calculated complete spectra of the staggered Dirac operator on the lattice in quenched SU(3) gauge theory for \beta = 5.4 and various lattice sizes. The microscopic spectral density, the distribution of the smallest eigenvalue, and the two-point spectral correlation function are analyzed. We find the expected agreement of the lattice data with universal predictions of the chiral unitary ensemble of random matrix theory up to a certain energy scale, the Thouless energy. The deviations from the universal predictions are determined using the disconnected scalar susceptibility. We find that the Thouless energy scales with the lattice size as expected from theoretical arguments making use of the Gell-Mann--Oakes--Renner relation.Comment: REVTeX, 5 pages, 4 figure
    • …
    corecore