284 research outputs found

    A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends

    Get PDF
    This is the peer reviewed version of the following article: Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R. and Torres-Giner, S. (2019), A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. J. Appl. Polym. Sci., 136, 47396, which has been published in final form at https://doi.org/10.1002/APP.47396. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] The present study reports on the development of binary blends consisting of bio-based high-density polyethylene (bio-HDPE) with polylactide (PLA), in the 5¿20 wt % range, prepared by melt compounding and then shaped into pieces by injection molding. In order to enhance the miscibility between the green polyolefin and the biopolyester, different reactive compatibilizers were added during the melt-blending process, namely polyethylene grafted maleic anhydride (PE-g-MA), poly(ethylene-co-glycidyl methacrylate) (PE-co-GMA), maleinized linseed oil (MLO), and a combination of MLO with dicumyl peroxide (DCP). Among the tested compatibilizers, the dual addition of MLO and DCP provided the binary blend pieces with the most balanced mechanical performance in terms of rigidity and impact strength as well as the highest thermal stability. The fracture surface of the binary blend piece processed with MLO and DCP revealed the formation of a continuous structure in which the dispersed PLA phase was nearly no discerned in the bio-HDPE matrix. The resultant miscibility improvement was ascribed to both the high solubility and plasticizing effect of MLO on the PLA phase as well as the crosslinking effect of DCP on both biopolymers. The latter effect was particularly related to the formation of macroradicals of each biopolymer that, thereafter, led to the in situ formation of bio HDPE-co-PLA copolymers and also to the development of a partially crosslinked network in the binary blend. As a result, cost-effective and fully bio-based polymer pieces with improved mechanical strength, high toughness, and enhanced thermal resistance were obtained.This research was funded by the EU H2020 project YPACK (reference number 773872) and by the Ministry of Science, Innovation, and Universities (MICIU, project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R). Quiles-Carrillo and Torres-Giner are recipients of a FPU grant (FPU15/03812) from the Spanish Ministry of Education, Culture, and Sports (MECD) and a Juan de la Cierva contract (IJCI-2016-29675) from the MICIU, respectively.Quiles-Carrillo, L.; Montanes, N.; Jorda-Vilaplana, A.; Balart, R.; Torres-Giner, S. (2019). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science. 136(16). https://doi.org/10.1002/APP.47396S13616Tahir, N., Bhatti, H. N., Iqbal, M., & Noreen, S. (2017). Biopolymers composites with peanut hull waste biomass and application for Crystal Violet adsorption. International Journal of Biological Macromolecules, 94, 210-220. doi:10.1016/j.ijbiomac.2016.10.013Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215-1233. doi:10.1016/j.eurpolymj.2013.01.019Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-602. doi:10.1016/j.progpolymsci.2006.03.002Quiles-Carrillo, L., Montanes, N., Pineiro, F., Jorda-Vilaplana, A., & Torres-Giner, S. (2018). Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(ε-caprolactone) and Thermoplastic Starch. Materials, 11(11), 2138. doi:10.3390/ma11112138Kumar, S., Panda, A. K., & Singh, R. K. (2011). A review on tertiary recycling of high-density polyethylene to fuel. Resources, Conservation and Recycling, 55(11), 893-910. doi:10.1016/j.resconrec.2011.05.005Biresaw, G., & Carriere, C. J. (2002). Interfacial tension of poly(lactic acid)/polystyrene blends. Journal of Polymer Science Part B: Polymer Physics, 40(19), 2248-2258. doi:10.1002/polb.10290Li, N., Li, Y., & Liu, S. (2016). Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. Journal of Materials Processing Technology, 238, 218-225. doi:10.1016/j.jmatprotec.2016.07.025Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Filho, R. M. (2012). Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnology Advances, 30(1), 321-328. doi:10.1016/j.biotechadv.2011.06.019Da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., & Schroeder, A. (2018). Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 340, 9-14. doi:10.1016/j.cej.2018.01.010Oksman, K., Skrifvars, M., & Selin, J.-F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 63(9), 1317-1324. doi:10.1016/s0266-3538(03)00103-9Auras, R., Harte, B., & Selke, S. (2004). An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience, 4(9), 835-864. doi:10.1002/mabi.200400043Agrawal, A., Saran, A. D., Rath, S. S., & Khanna, A. (2004). Constrained nonlinear optimization for solubility parameters of poly(lactic acid) and poly(glycolic acid)—validation and comparison. Polymer, 45(25), 8603-8612. doi:10.1016/j.polymer.2004.10.022Camacho, J., Díez, E., Díaz, I., & Ovejero, G. (2017). Hansen solubility parameter: from polyethylene and poly(vinyl acetate) homopolymers to ethylene-vinyl acetate copolymers. Polymer International, 66(7), 1013-1020. doi:10.1002/pi.5351Ferri, J. M., Samper, M. D., García-Sanoguera, D., Reig, M. J., Fenollar, O., & Balart, R. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science, 51(11), 5356-5366. doi:10.1007/s10853-016-9838-2Ying-Chen, Z., Hong-Yan, W., & Yi-Ping, Q. (2010). Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber. Bioresource Technology, 101(20), 7944-7950. doi:10.1016/j.biortech.2010.05.007Garcia, D., Balart, R., Sánchez, L., & López, J. (2007). Compatibility of recycled PVC/ABS blends. Effect of previous degradation. Polymer Engineering & Science, 47(6), 789-796. doi:10.1002/pen.20755Afshari, M., Kotek, R., Haghighat Kish, M., Nazock Dast, H., & Gupta, B. S. (2002). Effect of blend ratio on bulk properties and matrix–fibril morphology of polypropylene/nylon 6 polyblend fibers. Polymer, 43(4), 1331-1341. doi:10.1016/s0032-3861(01)00689-9Palabiyik, M., & Bahadur, S. (2000). Mechanical and tribological properties of polyamide 6 and high density polyethylene polyblends with and without compatibilizer. Wear, 246(1-2), 149-158. doi:10.1016/s0043-1648(00)00501-9Macosko, C. W., Guégan, P., Khandpur, A. K., Nakayama, A., Marechal, P., & Inoue, T. (1996). Compatibilizers for Melt Blending:  Premade Block Copolymers†. Macromolecules, 29(17), 5590-5598. doi:10.1021/ma9602482Wang, Y., & Hillmyer, M. A. (2001). Polyethylene-poly(L-lactide) diblock copolymers: Synthesis and compatibilization of poly(L-lactide)/polyethylene blends. Journal of Polymer Science Part A: Polymer Chemistry, 39(16), 2755-2766. doi:10.1002/pola.1254Nehra, R., Maiti, S. N., & Jacob, J. (2017). Poly(lactic acid)/(styrene-ethylene-butylene-styrene)-g-maleic anhydride copolymer/sepiolite nanocomposites: Investigation of thermo-mechanical and morphological properties. Polymers for Advanced Technologies, 29(1), 234-243. doi:10.1002/pat.4108Aróstegui, A., & Nazábal, J. (2003). Supertoughness and critical interparticle distance dependence in poly(butylene terephthalate) and poly(ethylene-co-glycidyl methacrylate) blends. Journal of Polymer Science Part B: Polymer Physics, 41(19), 2236-2247. doi:10.1002/polb.10582Li, Z., Tan, B. H., Lin, T., & He, C. (2016). Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Progress in Polymer Science, 62, 22-72. doi:10.1016/j.progpolymsci.2016.05.003Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057Zeng, J.-B., Li, K.-A., & Du, A.-K. (2015). Compatibilization strategies in poly(lactic acid)-based blends. RSC Advances, 5(41), 32546-32565. doi:10.1039/c5ra01655jCarbonell-Verdu, A., Samper, M. D., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2017). Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid). Industrial Crops and Products, 104, 278-286. doi:10.1016/j.indcrop.2017.04.050Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329Chen, G., Li, S., Jiao, F., & Yuan, Q. (2007). Catalytic dehydration of bioethanol to ethylene over TiO2/γ-Al2O3 catalysts in microchannel reactors. Catalysis Today, 125(1-2), 111-119. doi:10.1016/j.cattod.2007.01.071Babu, R. P., O’Connor, K., & Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2(1), 8. doi:10.1186/2194-0517-2-8Abdolrasouli, M. H., Sadeghi, G. M. M., Nazockdast, H., & Babaei, A. (2014). Polylactide/Polyethylene/Organoclay Blend Nanocomposites: Structure, Mechanical and Thermal Properties. Polymer-Plastics Technology and Engineering, 53(13), 1417-1424. doi:10.1080/03602559.2014.909477Abdolrasouli, M. H., Nazockdast, H., Sadeghi, G. M. M., & Kaschta, J. (2014). Morphology development, melt linear viscoelastic properties and crystallinity of polylactide/polyethylene/organoclay blend nanocomposites. Journal of Applied Polymer Science, 132(3), n/a-n/a. doi:10.1002/app.41300Madhu, G., Bhunia, H., Bajpai, P. K., & Chaudhary, V. (2014). Mechanical and morphological properties of high density polyethylene and polylactide blends. Journal of Polymer Engineering, 34(9), 813-821. doi:10.1515/polyeng-2013-0174Bétron, C., Cassagnau, P., & Bounor-Legaré, V. (2018). EPDM crosslinking from bio-based vegetable oil and Diels–Alder reactions. Materials Chemistry and Physics, 211, 361-374. doi:10.1016/j.matchemphys.2018.02.038Haque, M. M.-U., Herrera, N., Geng, S., & Oksman, K. (2017). Melt compounded nanocomposites with semi-interpenetrated network structure based on natural rubber, polyethylene, and carrot nanofibers. Journal of Applied Polymer Science, 135(10), 45961. doi:10.1002/app.45961Pourshooshtar, R., Ahmadi, Z., & Taromi, F. A. (2018). Formation of 3D networks in polylactic acid by adjusting the cross-linking agent content with respect to processing variables: a simple approach. Iranian Polymer Journal, 27(5), 329-337. doi:10.1007/s13726-018-0613-xZhou, L., He, H., Li, M., Huang, S., Mei, C., & Wu, Q. (2018). Enhancing mechanical properties of poly(lactic acid) through its in-situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls. Industrial Crops and Products, 112, 449-459. doi:10.1016/j.indcrop.2017.12.044Yang, S., Wu, Z.-H., Yang, W., & Yang, M.-B. (2008). Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Testing, 27(8), 957-963. doi:10.1016/j.polymertesting.2008.08.009Garcia-Garcia, D., Rayón, E., Carbonell-Verdu, A., Lopez-Martinez, J., & Balart, R. (2017). Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide. European Polymer Journal, 86, 41-57. doi:10.1016/j.eurpolymj.2016.11.018Ma, P., Hristova-Bogaerds, D. G., Lemstra, P. J., Zhang, Y., & Wang, S. (2011). Toughening of PHBV/PBS and PHB/PBS Blends via In situ Compatibilization Using Dicumyl Peroxide as a Free-Radical Grafting Initiator. Macromolecular Materials and Engineering, 297(5), 402-410. doi:10.1002/mame.201100224Utracki, L. A. (2002). Compatibilization of Polymer Blends. The Canadian Journal of Chemical Engineering, 80(6), 1008-1016. doi:10.1002/cjce.5450800601Wang, Q., Qi, R., Shen, Y., Liu, Q., & Zhou, C. (2007). Effect of high-density polyethylene-g-maleic anhydride on the morphology and properties of (high-density polyethylene)/(ethylene-vinyl alcohol) copolymer alloys. Journal of Applied Polymer Science, 106(5), 3220-3226. doi:10.1002/app.26097Quiroz-Castillo, J. M., Rodríguez-Félix, D. E., Grijalva-Monteverde, H., del Castillo-Castro, T., Plascencia-Jatomea, M., Rodríguez-Félix, F., & Herrera-Franco, P. J. (2014). Preparation of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride. Carbohydrate Polymers, 101, 1094-1100. doi:10.1016/j.carbpol.2013.10.052Ma, P., Cai, X., Zhang, Y., Wang, S., Dong, W., Chen, M., & Lemstra, P. J. (2014). In-situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator. Polymer Degradation and Stability, 102, 145-151. doi:10.1016/j.polymdegradstab.2014.01.025Yoo, T. W., Yoon, H. G., Choi, S. J., Kim, M. S., Kim, Y. H., & Kim, W. N. (2010). Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends. Macromolecular Research, 18(6), 583-588. doi:10.1007/s13233-010-0613-yMontanes, N., Garcia-Sanoguera, D., Segui, V. J., Fenollar, O., & Boronat, T. (2017). Processing and Characterization of Environmentally Friendly Composites from Biobased Polyethylene and Natural Fillers from Thyme Herbs. Journal of Polymers and the Environment, 26(3), 1218-1230. doi:10.1007/s10924-017-1025-2Huang, Y., Zhang, C., Pan, Y., Wang, W., Jiang, L., & Dan, Y. (2012). Study on the Effect of Dicumyl Peroxide on Structure and Properties of Poly(Lactic Acid)/Natural Rubber Blend. Journal of Polymers and the Environment, 21(2), 375-387. doi:10.1007/s10924-012-0544-0Wang, N., Yu, J., & Ma, X. (2007). Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polymer International, 56(11), 1440-1447. doi:10.1002/pi.230

    Determination of Interleukin-6 and Tumor Necrosis Factor-alpha concentrations in Iranian-Khorasanian patients with preeclampsia

    Get PDF
    BACKGROUND: Our objective was to determine the role of Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-alpha), markers of immune activation and endothelial dysfunction, in patients with preeclampsia. METHODS: Twenty four women with preeclampsia and eighteen antepartum normotensive pregnant women were recruited as controls. Serum levels of IL-6 and TNF-alpha were measured by enzyme-linked immunosorbent assay. We used independent-samples t test to assess the differences in the concentration of cytokines in preeclamptic patients and control subjects. RESULTS: IL-6 levels [mean (S.D.)] were significantly higher in preeclamptic women [5.8 (4.85) pg/ml] compared to normal pregnant women [3.01 (2.45) pg/ml] (p = 0.02). There was no significant change in concentration of TNF-alpha in preeclamptic women [53.8 (30.0) pg/ml] compared to normal pregnant women [51.9 (33.8) pg/ml] (p > 0.1). CONCLUSION: The results of this study show that IL-6 as a pro-inflammatory cytokine is present in higher concentration in women with preeclampsia. The study was undertaken in women with established preeclampsia and it is not possible to determine whether the increased concentration of IL-6 is a cause or consequence of the disease. Furthermore, these findings suggest that serum TNF-alpha level is not associated with preeclampsia

    Statistical Multiplicity in Systematic Reviews of Anaesthesia Interventions: A Quantification and Comparison between Cochrane and Non-Cochrane Reviews

    Get PDF
    BACKGROUND: Systematic reviews with meta-analyses often contain many statistical tests. This multiplicity may increase the risk of type I error. Few attempts have been made to address the problem of statistical multiplicity in systematic reviews. Before the implications are properly considered, the size of the issue deserves clarification. Because of the emphasis on bias evaluation and because of the editorial processes involved, Cochrane reviews may contain more multiplicity than their non-Cochrane counterparts. This study measured the quantity of statistical multiplicity present in a population of systematic reviews and aimed to assess whether this quantity is different in Cochrane and non-Cochrane reviews. METHODS/PRINCIPAL FINDINGS: We selected all the systematic reviews published by the Cochrane Anaesthesia Review Group containing a meta-analysis and matched them with comparable non-Cochrane reviews. We counted the number of statistical tests done in each systematic review. The median number of tests overall was 10 (interquartile range (IQR) 6 to 18). The median was 12 in Cochrane and 8 in non-Cochrane reviews (difference in medians 4 (95% confidence interval (CI) 2.0-19.0). The proportion that used an assessment of risk of bias as a reason for doing extra analyses was 42% in Cochrane and 28% in non-Cochrane reviews (difference in proportions 14% (95% CI -8 to 36). The issue of multiplicity was addressed in 6% of all the reviews. CONCLUSION/SIGNIFICANCE: Statistical multiplicity in systematic reviews requires attention. We found more multiplicity in Cochrane reviews than in non-Cochrane reviews. Many of the reasons for the increase in multiplicity may well represent improved methodological approaches and greater transparency, but multiplicity may also cause an increased risk of spurious conclusions. Few systematic reviews, whether Cochrane or non-Cochrane, address the issue of multiplicity

    Simultaneous thermal and visual imaging of liquid water of the PEM fuel cell flow channels

    Get PDF
    Water flooding and membrane dry-out are two major issues that could be very detrimental to the performance and/or durability of the proton exchange membrane (PEM) fuel cells. The above two phenomena are well-related to the distributions of and the interaction between the water saturation and temperature within the membrane electrode assembly (MEA). To obtain further insights into the relation between water saturation and temperature, the distributions of liquid water and temperature within a transparent PEM fuel cell have been imaged using high-resolution digital and thermal cameras. A parametric study, in which the air flow rate has been incrementally changed, has been conducted to explore the viability of the proposed experimental procedure to correlate the relation between the distribution of liquid water and temperature along the MEA of the fuel cell. The results have shown that, for the investigated fuel cell, more liquid water and more uniform temperature distribution along MEA at the cathode side are obtained as the air flow rate decreases. Further, the fuel cell performance was found to increase with decreasing air flow rate. All the above results have been discussed

    Peripheral Blood Signatures of Lead Exposure

    Get PDF
    BACKGROUND: Current evidence indicates that even low-level lead (Pb) exposure can have detrimental effects, especially in children. We tested the hypothesis that Pb exposure alters gene expression patterns in peripheral blood cells and that these changes reflect dose-specific alterations in the activity of particular pathways. METHODOLOGY/PRINCIPAL FINDING: Using Affymetrix Mouse Genome 430 2.0 arrays, we examined gene expression changes in the peripheral blood of female Balb/c mice following exposure to per os lead acetate trihydrate or plain drinking water for two weeks and after a two-week recovery period. Data sets were RMA-normalized and dose-specific signatures were generated using established methods of supervised classification and binary regression. Pathway activity was analyzed using the ScoreSignatures module from GenePattern. CONCLUSIONS/SIGNIFICANCE: The low-level Pb signature was 93% sensitive and 100% specific in classifying samples a leave-one-out crossvalidation. The high-level Pb signature demonstrated 100% sensitivity and specificity in the leave-one-out crossvalidation. These two signatures exhibited dose-specificity in their ability to predict Pb exposure and had little overlap in terms of constituent genes. The signatures also seemed to reflect current levels of Pb exposure rather than past exposure. Finally, the two doses showed differential activation of cellular pathways. Low-level Pb exposure increased activity of the interferon-gamma pathway, whereas high-level Pb exposure increased activity of the E2F1 pathway

    Applications of microarray technology in breast cancer research

    Get PDF
    Microarrays provide a versatile platform for utilizing information from the Human Genome Project to benefit human health. This article reviews the ways in which microarray technology may be used in breast cancer research. Its diverse applications include monitoring chromosome gains and losses, tumour classification, drug discovery and development, DNA resequencing, mutation detection and investigating the mechanism of tumour development

    Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity

    Get PDF
    corecore