122 research outputs found

    A weak spectral signature of water vapour in the atmosphere of HD 179949 b at high spectral resolution in the L band

    Get PDF
    High-resolution spectroscopy (⁠R⩾20000⁠) is currently the only known method to constrain the orbital solution and atmospheric properties of non-transiting hot Jupiters. It does so by resolving the spectral features of the planet into a forest of spectral lines and directly observing its Doppler shift while orbiting the host star. In this study, we analyse VLT/CRIRES (⁠R=100000⁠) L-band observations of the non-transiting giant planet HD 179949 b centred around 3.5 μm⁠. We observe a weak (3.0σ, or S/N = 4.8) spectral signature of H2O in absorption contained within the radial velocity of the planet at superior-conjunction, with a mild dependence on the choice of line list used for the modelling. Combining this data with previous observations in the K band, we measure a detection significance of 8.4 σ for an atmosphere that is most consistent with a shallow lapse-rate, solar C/O ratio, and with CO and H2O being the only major sources of opacity in this wavelength range. As the two sets of data were taken 3 yr apart, this points to the absence of strong radial-velocity anomalies due, e.g. to variability in atmospheric circulation. We measure a projected orbital velocity for the planet of KP = (145.2 ± 2.0) km s−1 (1σ) and improve the error bars on this parameter by ∼70 per cent. However, we only marginally tighten constraints on orbital inclination (⁠66.2+3.7−3.1 deg) and planet mass (⁠0.963+0.036−0.031 Jupiter masses), due to the dominant uncertainties of stellar mass and semimajor axis. Follow ups of radial-velocity planets are thus crucial to fully enable their accurate characterization via high-resolution spectroscopy

    Dynamical parton distributions of the nucleon and very small-x physics

    Full text link
    Utilizing recent DIS measurements (F_{2,L}) and data on dilepton and high-E_{T} jet production we determine the dynamical parton distributions of the nucleon generated radiatively from valence-like positive input distributions at optimally chosen low resolution scales. These are compared with `standard' distributions generated from positive input distributions at some fixed and higher resolution scale. It is shown that up to the next to leading order NLO(\bar{MS}, DIS) of perturbative QCD considered in this paper, the uncertainties of the dynamical distributions are, as expected, smaller than those of their standard counterparts. This holds true in particular in the presently unexplored extremely small-x region relevant for evaluating ultrahigh energy cross sections in astrophysical applications. It is noted that our new dynamical distributions are compatible, within the presently determined uncertainties, with previously determined dynamical parton distributions.Comment: 21 pages, 2 tables, 16 figures, v2: added Ref.[60], replaced Fig.

    A rapid optical and X-ray timing study of the neutron star X-ray binary Swift J1858.6–0814

    Get PDF
    We present a rapid timing analysis of optical (HiPERCAM and ULTRACAM) and X-ray (NICER) observations of the X-ray transient Swift J1858.6−0814 during 2018 and 2019. The optical light curves show relatively slow, large amplitude (∼1 mag in gs) ‘blue’ flares (i.e. stronger at shorter wavelengths) on time-scales of ∼minutes as well as fast, small amplitude (∼0.1 mag in gs) ‘red’ flares (i.e. stronger at longer wavelengths) on time-scales of ∼seconds. The ‘blue’ and ‘red’ flares are consistent with X-ray reprocessing and optically thin synchrotron emission, respectively, similar to what is observed in other X-ray binaries. The simultaneous optical versus soft- and hard-band X-ray light curves show time- and energy-dependent correlations. The 2019 March 4 and parts of the June data show a nearly symmetric positive cross-correlations (CCFs) at positive lags consistent with simple X-ray disc reprocessing. The soft- and hard-band CCFs are similar and can be reproduced if disc reprocessing dominates in the optical and one component (disc or synchrotron Comptonization) dominates both the soft and hard X-rays. A part of the 2019 June data shows a very different CCFs. The observed positive correlation at negative lag in the soft band can be reproduced if the optical synchrotron emission is correlated with the hot flow X-ray emission. The observed timing properties are in qualitative agreement with the hybrid inner hot accretion flow model, where the relative role of the different X-ray and optical components that vary during the course of the outburst, as well as on shorter time-scales, govern the shape of the optical/X-ray CCFs

    Utility of the Hebb–Williams maze paradigm for translational research in Fragile X syndrome: A direct comparison of mice and humans

    Get PDF
    To generate meaningful information, translational research must employ paradigms that allow extrapolation from animal models to humans. However, few studies have evaluated translational paradigms on the basis of defined validation criteria. We outline three criteria for validating translational paradigms. We then evaluate the Hebb–Williams maze paradigm (Hebb and Williams, 1946; Rabinovitch and Rosvold, 1951) on the basis of these criteria using Fragile X syndrome (FXS) as model disease. We focuse

    Impact of clinical phenotypes on management and outcomes in European atrial fibrillation patients: a report from the ESC-EHRA EURObservational Research Programme in AF (EORP-AF) General Long-Term Registry

    Get PDF
    Background: Epidemiological studies in atrial fibrillation (AF) illustrate that clinical complexity increase the risk of major adverse outcomes. We aimed to describe European AF patients\u2019 clinical phenotypes and analyse the differential clinical course. Methods: We performed a hierarchical cluster analysis based on Ward\u2019s Method and Squared Euclidean Distance using 22 clinical binary variables, identifying the optimal number of clusters. We investigated differences in clinical management, use of healthcare resources and outcomes in a cohort of European AF patients from a Europe-wide observational registry. Results: A total of 9363 were available for this analysis. We identified three clusters: Cluster 1 (n = 3634; 38.8%) characterized by older patients and prevalent non-cardiac comorbidities; Cluster 2 (n = 2774; 29.6%) characterized by younger patients with low prevalence of comorbidities; Cluster 3 (n = 2955;31.6%) characterized by patients\u2019 prevalent cardiovascular risk factors/comorbidities. Over a mean follow-up of 22.5 months, Cluster 3 had the highest rate of cardiovascular events, all-cause death, and the composite outcome (combining the previous two) compared to Cluster 1 and Cluster 2 (all P <.001). An adjusted Cox regression showed that compared to Cluster 2, Cluster 3 (hazard ratio (HR) 2.87, 95% confidence interval (CI) 2.27\u20133.62; HR 3.42, 95%CI 2.72\u20134.31; HR 2.79, 95%CI 2.32\u20133.35), and Cluster 1 (HR 1.88, 95%CI 1.48\u20132.38; HR 2.50, 95%CI 1.98\u20133.15; HR 2.09, 95%CI 1.74\u20132.51) reported a higher risk for the three outcomes respectively. Conclusions: In European AF patients, three main clusters were identified, differentiated by differential presence of comorbidities. Both non-cardiac and cardiac comorbidities clusters were found to be associated with an increased risk of major adverse outcomes

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    A remnant planetary core in the hot-Neptune desert

    Get PDF
    The interiors of giant planets remain poorly understood. Even for the planets in the Solar System, difficulties in observation lead to large uncertainties in the properties of planetary cores. Exoplanets that have undergone rare evolutionary processes provide a route to understanding planetary interiors. Planets found in and near the typically barren hot-Neptune ‘desert’1,2 (a region in mass–radius space that contains few planets) have proved to be particularly valuable in this regard. These planets include HD149026b3, which is thought to have an unusually massive core, and recent discoveries such as LTT9779b4 and NGTS-4b5, on which photoevaporation has removed a substantial part of their outer atmospheres. Here we report observations of the planet TOI-849b, which has a radius smaller than Neptune’s but an anomalously large mass of 39.1−2.6+2.7 Earth masses and a density of 5.2−0.8+0.7 grams per cubic centimetre, similar to Earth’s. Interior-structure models suggest that any gaseous envelope of pure hydrogen and helium consists of no more than 3.9−0.9+0.8 per cent of the total planetary mass. The planet could have been a gas giant before undergoing extreme mass loss via thermal self-disruption or giant planet collisions, or it could have avoided substantial gas accretion, perhaps through gap opening or late formation6. Although photoevaporation rates cannot account for the mass loss required to reduce a Jupiter-like gas giant, they can remove a small (a few Earth masses) hydrogen and helium envelope on timescales of several billion years, implying that any remaining atmosphere on TOI-849b is likely to be enriched by water or other volatiles from the planetary interior. We conclude that TOI-849b is the remnant core of a giant planet

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    Analysis of flat-plate collectors charged with phase-changing fluids

    No full text
    The steady-state performance of flat-plate collectors, charged with phase-changing working fluids, has been studied analytically. The collector is divided into three distinct regions of heat transfer--(i) that in which the fluid is sensibly heated, (ii) that in which boiling occurs and (iii) that in which the vapour is superheated. The results are then combined to express the collector efficiency as a function of the saturation temperature and liquid level. Numerical calculations of the collector efficiencies were carried out for double-glazed flat-plate collectors employing R-11 as the working fluid.
    corecore