181 research outputs found

    The effect of an iron oxide catalyst (Fe3O4) on the characteristics of Waxy Oil coke

    Get PDF
    A study was conducted on four commercial Waxy Oil green cokes with varying catalyst (Fe3O4) concentrations (ash content: 1.84–11.18%), to determine the effect thereof on the structural characteristics of calcined (1400 C) and pre-graphitised (2000 C) cokes. An increase in the catalyst content of the coke shows a substantial detrimental effect on the overall anisotropy of the carbon microtexture. Catalyst particles below 100 lm) were found to present a physical barrier around which the anisotropic flow domains formed. At higher catalyst concentrations the catalyst dominates the carbon microtexture; however, there is still evidence of flow patterns albeit with a shorter range. XRD powder data and Raman spectroscopy provide evidence of multiphase graphitisation in both the calcined coke and pre-graphite. The crystal development of the calcined coke is dominated by catalytic graphitisation and that of the pregraphite showed a greater dependence on thermal graphitisation. This is the first scientific study of the effect of catalyst concentration on the characteristics of this novel coke and proves the disingenuous comparability thereof with a highly anisotropic coke (e.g. needle coke).http://www.elsevier.com/locate/fue

    How do drivers recall positive and negative driving events? A quantitative approach to analysing driving diaries

    Get PDF
    Whilst diary studies are often analysed in a qualitative manner, quantitative methods which analyse the percentage of different types of language used in diary entries, now exist. From a driving perspective, this could arguably tell us more about the underlying psychological processes occurring when drivers reflect on their on-road experiences. As part of a larger project, the current study used a quantitative method of language analysis, known as word count analysis, to compare driver diaries in which positive and negative driving events were reflected upon. Results suggested that when describing positive events, drivers discuss them with more elaborate and descriptive language and focus on certainty and goal-driven processes. Negative events, however, had more of a social focus as indicated by an increased use of function words. These findings provide insights into the ways in which positive and negative driving events may be appraised. Additionally, drivers used more words indicating control and reward when describing positive driving events; this is discussed in consideration of how word count analyses can provide further insight into psychological process associated with emotion, such as appraisals

    The effects of instruction and environmental demand on state anxiety, driving performance and autonomic activity: Are ego-threatening manipulations effective?

    Get PDF
    A small yet emerging body of research on the relationship between anxiety and driving suggests that higher levels of state anxiety may lead to more dangerous driving behaviours. The aim of the current research was to investigate the effects of increased state anxiety on driving behaviours within a simulated environment using instructional sets to manipulate anxiety levels. In Study One, whilst a set of safety-related instructions were able to increase state anxiety, this did not result in changes to driving behaviours. In Study Two, ego-threatening instructions were not able to successfully increase state anxiety. This has implications regarding instructional sets in research, including their task relevance and the necessity for a motivational incentive. However, when changes in anxiety were considered regardless of instruction group, Study Two found changes in SDLP and skin conductance levels related to state anxiety increases. As these effects were context specific, it is argued that some of these changes may be due to poorer processing efficiency, leading to suggestions about the types of behaviours that may need to be trained in potential therapies for those who show high state anxiety levels whilst driving

    INDCOR white paper on the Design of Complexity IDNs

    Get PDF
    This white paper was written by the members of the Work Group focusing on design practices of the COST Action 18230 - Interactive Narrative Design for Complexity Representation (INDCOR, WG1). It presents an overview of Interactive Digital Narratives (IDNs) design for complexity representations through IDN workflows and methodologies, IDN authoring tools and applications. It provides definitions of the central elements of the IDN alongside its best practices, designs and methods. Finally, it describes complexity as a feature of IDN, with related examples. In summary, this white paper serves as an orienting map for the field of IDN design, understanding where we are in the contemporary panorama while charting the grounds of their promising futures

    Asymmetry through time dependency

    Get PDF
    Given a single network of interactions, asymmetry arises when the links are directed. For example, if protein A upregulates protein B and protein B upregulates protein C, then (in the absence of any further relationships between them) A may affect C but not vice versa. This type of imbalance is reflected in the associated adjacency matrix, which will lack symmetry. A different type of imbalance can arise when interactions appear and disappear over time. If A meets B today and B meets C tomorrow, then (in the absence of any further relationships between them) A may pass a message or disease to C, but not vice versa. Hence, even when each interaction is a two-way exchange, the effect of time ordering can introduce asymmetry. This observation is very closely related to the fact that matrix multiplication is not commutative. In this work, we describe a method that has been designed to reveal asymmetry in static networks and show how it may be combined with a measure that summarizes the potential information flow between nodes in the temporal case. This results in a new method that quantifies the asymmetry arising through time ordering. We show by example that the new tool can be used to visualize and quantify the amount of asymmetry caused by the arrow of time

    Dust in Supernovae and Supernova Remnants I : Formation Scenarios

    Get PDF
    Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.Peer reviewe

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    Get PDF
    Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
    corecore