20 research outputs found

    The one-component plasma: a conceptual approach

    Full text link
    The one-component plasma (OCP) represents the simplest statistical mechanical model of a Coulomb system. For this reason, it has been extensively studied over the last forty years. The advent of the integral equations has resulted in a dramatic improvement in our ability to carry out numerical calculations, but came at the expense of a physical insight gained in a simpler analytic theory. In this paper we present an extension of the Debye-Hueckel (DH) theory to the OCP. The theory allows for analytic calculations of all the thermodynamic functions, as well as the structure factor. The theory explicitly satisfies the Stillinger-Lovett and, for small couplings, the compressibility sum rules, implying its internal self consistency.Comment: 28 pages, 5 Postscript figures, uses elsart.sty, accepted for publication in Physica

    Density-functional theory for attraction between like-charged plates

    Full text link
    We study the interactions between two negatively charged macroscopic surfaces confining positive counterions. A density-functional approach is introduced which, besides the usual mean-field interactions, takes into account the correlations in the positions of counterions. The excess free energy is derived in the framework of the Debye-H{\"u}ckel theory of the one-component plasma, with the homogeneous density replaced by a weighted density. The minimization of the total free energy yields the density profile of the microions. The pressure is calculated and compared with the simulations and the results derived from integral equations theories. We find that the interaction between the two plates becomes attractive when their separation distance is sufficiently small and the surface charge density is larger than a threshold value.Comment: 7 pages, 4 Postscript figures, uses multicol.st

    Theory of High-Force DNA Stretching and Overstretching

    Get PDF
    Single molecule experiments on single- and double stranded DNA have sparked a renewed interest in the force-extension of polymers. The extensible Freely Jointed Chain (FJC) model is frequently invoked to explain the observed behavior of single-stranded DNA. We demonstrate that this model does not satisfactorily describe recent high-force stretching data. We instead propose a model (the Discrete Persistent Chain, or ``DPC'') that borrows features from both the FJC and the Wormlike Chain, and show that it resembles the data more closely. We find that most of the high-force behavior previously attributed to stretch elasticity is really a feature of the corrected entropic elasticity; the true stretch compliance of single-stranded DNA is several times smaller than that found by previous authors. Next we elaborate our model to allow coexistence of two conformational states of DNA, each with its own stretch and bend elastic constants. Our model is computationally simple, and gives an excellent fit through the entire overstretching transition of nicked, double-stranded DNA. The fit gives the first values for the elastic constants of the stretched state. In particular we find the effective bend stiffness for DNA in this state to be about 10 nm*kbt, a value quite different from either B-form or single-stranded DNAComment: 33 pages, 11 figures. High-quality figures available upon reques

    Reversible stretching of homopolymers and random heteropolymers

    Full text link
    We have analyzed the equilibrium response of chain molecules to stretching. For a homogeneous sequence of monomers, the induced transition from compact globule to extended coil below the θ\theta-temperature is predicted to be sharp. For random sequences, however, the transition may be smoothed by a prevalence of necklace-like structures, in which globular regions and coil regions coexist in a single chain. As we show in the context of a random copolymer, preferential solvation of one monomer type lends stability to such structures. The range of stretching forces over which necklaces are stable is sensitive to chain length as well as sequence statistics.Comment: 14 pages, 4 figure

    The field theoretic derivation of the contact value theorem in planar geometries and its modification by the Casimir effect

    Full text link
    The contact value theorem for Coulomb gases in planar or film-like geometries is derived using a Hamiltonian field theoretic representation of the system. The case where the film is enclosed by a material of different dielectric constant to that of the film is shown to contain an additional Casimir-like term which is generated by fluctuations of the electric potential about its mean-field value.Comment: Link between Sine-Gordon and Coulomb gas pressures via subtraction of self interaction terms included. Discussion of results within Debye-Huckel approximation included. Added reference

    Counterion Condensation and Fluctuation-Induced Attraction

    Full text link
    We consider an overall neutral system consisting of two similarly charged plates and their oppositely charged counterions and analyze the electrostatic interaction between the two surfaces beyond the mean-field Poisson-Boltzmann approximation. Our physical picture is based on the fluctuation-driven counterion condensation model, in which a fraction of the counterions is allowed to ``condense'' onto the charged plates. In addition, an expression for the pressure is derived, which includes fluctuation contributions of the whole system. We find that for sufficiently high surface charges, the distance at which the attraction, arising from charge fluctuations, starts to dominate can be large compared to the Gouy-Chapmann length. We also demonstrate that depending on the valency, the system may exhibit a novel first-order binding transition at short distances.Comment: 15 pages, 8 figures, to appear in PR

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    Aqueous Suspensions Of Charged Spherical Colloids: Dependence Of The Surface Charge On Ionic Strength, Acidity, And Colloid Concentration

    No full text
    We theoretically investigate the dependence of the surface charge developed on charged spherical colloids upon several environmental parameters: the ionic strength of the monovalent added electrolyte, acidity (stabilized by a pH buffer solution), and colloid concentration. In the framework of the mean-field Poisson-Boltzmann spherical cell model, we include the charged colloid-microion correlations into the buffer equation, and we allow for the specific binding of ions to the ionizable groups on the colloid surface. Theoretical predictions are compared to the results obtained under the planar-symmetry Gouy-Chapman approximation and analyzed for the experimental conditions of an aqueous dispersion of the phospholipid dimyristoyl phosphatidylglycerol (DMPG). Experimental measurements of the partition ratio of an aqueous soluble cationic spin label on buffered dispersions of polyanionic unilamellar vesicles of DMPG in the presence of added monovalent salt are theoretically interpreted in terms of ion partition due to electrostatic interactions. We show that the specific binding of the probe must be admitted to explain the experimental results. © 2005 American Chemical Society.21241100511016Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J., (2000) Molecular Cell Biology, 4th Ed., , W. H. Freeman: New YorkAlberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., (2002) Molecular Biology of the Cell, 4th Ed., , Garland: New YorkHonig, B., Nicholls, A., (1995) Science, 268, p. 1144Israelachvili, J.N., (1992) Intermolecular and Surface Forces, 2nd Ed., , Academic Press: LondonLamy-Freund, M.T., Riske, K.A., (2003) Chem. Phys. Lipids, 122, p. 19Riske, K.A., Politi, M.J., Reed, W.F., Lamy-Freund, M.T., (1997) Chem. Phys. Lipids, 89, p. 31Goldman, C., Riske, K.A., Lamy-Freund, M.T., (1999) Phys. Rev. E, 60, p. 7349Goldman, C., (2001) J. Chem. Phys., 114, p. 6242Riske, K.A., Fernandez, R.M., Nascimento, O.R., Bales, B.L., Lamy-Freund, M.T., (2003) Chem. Phys. Lipids, 124, p. 69Riske, K.A., Amaral, L.Q., Döbereiner, H.-G., Lamy, M.T., (2004) Biophys. J., 86, p. 3722Schneider, M.F., Marsh, D., Jahn, W., Kloesgen, B., Heimburg, T., (1999) Proc. Natl. Acad. Sci. U.S.A., 96, p. 14312Riske, K.A., Nascimento, O.R., Peric, M., Bales, B.L., Lamy-Freund, M.T., (1999) Biochim. Biophys. Acta, 1418, p. 133Hill, T.L., (1986) An Introduction to Statistical Thermodynamics, , Dover Publications: New York, Chapter 16Fuoss, R.M., Katchalsky, A., Lifson, S., (1951) Proc. Natl. Acad. Sci. U.S.A., 37, p. 579Alfrey, T., Berg, P.W., Morawetz, H., (1951) J. Polym. Sci., 7, p. 543Marcus, R.A., (1955) J. Chem. Phys., 23, p. 1057Levin, Y., (2002) Rep. Prog. Phys., 65, p. 1577notenoteTamashiro, M.N., Schiessel, H., EPAPS document E-JCPSA6-119-516326 (2003) J. Chem. Phys., 119, p. 1855. , http://www.aip.org/pubservs/epaps.html, Complement toDeserno, M., Holm, C., Cell model and Poisson-Boltzmann theory: A brief introduction (2001) Proceedings of the NATO Advanced Study Institute on Electrostatic Effects in Soft Matter and Biophysics, p. 27. , Holm, C., Kékicheff, P., Podgornik, R., Eds.Kluwer: Dordrecht, The NetherlandsHunter, R.J., (1986) Zeta Potential in Colloid Science: Principles and Applications, , 2nd printingAcademic Press: LondonTamashiro, M.N., Levin, Y., Barbosa, M.C., (1998) Eur. Phys. J. B, 1, p. 337Trizac, E., Bocquet, L., Aubouy, M., Von Grünberg, H.H., (2003) Langmuir, 19, p. 4027noteArcher, D.G., Wang, P., (1990) J. Phys. Chem. Ref. Data, 19, p. 371Good, N.E., Winget, G.D., Winter, W., Connolly, T.N., Izawa, S., Singh, R.M.M., (1966) Biochemistry, 5, p. 467Watts, A., Harlos, K., Maschke, W., Marsch, D., (1978) Biochim. Biophys. Acta, 510, p. 63Toko, K., Yamafuji, K., (1980) Chem. Phys. Lipids, 26, p. 79Ramanathan, G.V., (1988) J. Chem. Phys., 88, p. 3887Shkel, I.A., Tsodikov, O.V., Record Jr., M.T., (2000) J. Phys. Chem. B, 104, p. 5161Riske, K.A., (1997), M.S. Thesis, University of São Paulo, BrazilCampos, A.F.C., Tourinho, F.A., Da Silva, G.J., Lara, M.C.F.L., Depeyrot, J., (2001) Eur. Phys. J. E, 6, p. 29Tourinho, F.A., Campos, A.F.C., Aquino, R., Lara, M.C.F.L., Da Silva, G.J., Depeyrot, J., (2002) Braz. J. Phys., 32, p. 501Gisler, T., Schulz, S.F., Borkovec, M., Sticher, H., Schurten-Berger, P., D'Aguanno, B., Klein, R., (1994) J. Chem. Phys., 101, p. 9924Lide, D.R., (1997) CRC Handbook of Chemistry and Physics, 78th Ed., pp. 6-8. , CRC Press: Boca RatonAtkins, P.W., (2000) Physical Chemistry, 6th Ed., , Oxford University Press: Oxford, Section 9.5Sørensen, S.P.L., (1909) Biochem. Z., 21, p. 131Sørensen, S.P.L., Linderstrøm-Lang, K.L., (1924) C. R. Trav. Lab. Carlsberg, 15, p. 1Buck, R.P., Rodinini, S., Covington, A.K., Baucke, F.G.K., Brett, C.M.A., Camões, M.P., Milton, M.J.T., Wilson, G.S., (2002) Pure Appl. Chem., 74, p. 2169Baucke, F.G.K., (2002) Anal. Bioanal. Chem., 374, p. 772Spitzer, P., Werner, B., (2002) Anal. Bioanal. Chem., 374, p. 787McQuarrie, D.A., (2000) Statistical Mechanics, , University Science Books: Sausalito, CA, Chapter 15Gouy, G., (1910) J. Phys. Paris, 9, p. 457(1917) Ann. Phys., 7, p. 129Chapman, D.L., (1913) Philos. Mag., 25, p. 475Loeb, A.L., Wiersema, P.H., Overbeek, J.T.G., (1961) The Electrical Double Layer Around a Spherical Colloid Particle, , MIT Press: Cambridge, M

    Phase Transitions And Spatially Ordered Counterion Association In Ionic-lipid Membranes: A Statistical Model

    No full text
    We propose a statistical model to account for the gel-fluid anomalous phase transitions in charged bilayer- or lamellae-forming ionic lipids. The model Hamiltonian comprises effective attractive interactions to describe neutral-lipid membranes as well as the effect of electrostatic repulsions of the discrete ionic charges on the lipid headgroups. The latter can be counterion dissociated (charged) or counterion associated (neutral), while the lipid acyl chains may be in gel (low-temperature or high-lateral-pressure) or fluid (high-temperature or low-lateral-pressure) states. The system is modeled as a lattice gas with two distinct particle types-each one associated, respectively, with the polar-headgroup and the acyl-chain states-which can be mapped onto an Ashkin-Teller model with the inclusion of cubic terms. The model displays a rich thermodynamic behavior in terms of the chemical potential of counterions (related to added salt concentration) and lateral pressure. In particular, we show the existence of semidissociated thermodynamic phases related to the onset of charge order in the system. This type of order stems from spatially ordered counterion association to the lipid headgroups, in which charged and neutral lipids alternate in a checkerboard-like order. Within the mean-field approximation, we predict that the acyl-chain order-disorder transition is discontinuous, with the first-order line ending at a critical point, as in the neutral case. Moreover, the charge order gives rise to continuous transitions, with the associated second-order lines joining the aforementioned first-order line at critical end points. We explore the thermodynamic behavior of some physical quantities, like the specific heat at constant lateral pressure and the degree of ionization, associated with the fraction of charged lipid headgroups. © 2011 American Physical Society.843Nagle, J.F., (1980) Ann. Rev. Phys. Chem., 31, p. 157. , ARPLAP 0066-426X 10.1146/annurev.pc.31.100180.001105Cevc, G., Marsh, D., (1987) Phospholipid Bilayers: Physical Principles and Models, , Wiley Interscience, New YorkMarsh, D., (1991) Chem. Phys. Lipids, 57, p. 109. , 0009-3084 10.1016/0009-3084(91)90071-ICevc, G., (1993) Phospholipids Handbook, , (ed.), Marcel Dekker, New YorkKoynova, R., Caffrey, M., Phases and phase transitions of the phosphatidylcholines (1998) Biochimica et Biophysica Acta - Reviews on Biomembranes, 1376 (1), pp. 91-145. , DOI 10.1016/S0304-4157(98)00006-9, PII S0304415798000069Koynova, R., Caffrey, M., Erratum: Phases and phase transitions of the phosphatidylcholines (Biochimica et Biophysica Acta (1998) 1376 (91-145) PII: S0304415798000069) (2001) Biochimica et Biophysica Acta - Biomembranes, 1513 (1), p. 82. , DOI 10.1016/S0304-4157(01)00004-1, PII S0304415701000041Nagle, J.F., Tristam-Nagle, S., (2000) Biochim. Biophys. Acta, 1469, p. 159. , 0304-4157 10.1016/S0304-4157(00)00016-2Tristram-Nagle, S., Nagle, J.F., Lipid bilayers: Thermodynamics, structure, fluctuations, and interactions (2004) Chemistry and Physics of Lipids, 127 (1), pp. 3-14. , DOI 10.1016/j.chemphyslip.2003.09.002Heimburg, T., (2007) Thermal Biophysics of Membranes, , Wiley-VCH, WeinheimRiske, K.A., Amaral, L.Q., Lamy-Freund M.Teresa, Thermal transitions of DMPG bilayers in aqueous solution: SAXS structural studies (2001) Biochimica et Biophysica Acta - Biomembranes, 1511 (2), pp. 297-308. , DOI 10.1016/S0005-2736(01)00287-5, PII S0005273601002875Riske, K.A., Amaral, L.Q., Dobereiner, H.-G., Lamy, M.T., Mesoscopic structure in the chain-melting regime of anionic phospholipid vesicles: DMPG (2004) Biophysical Journal, 86 (6), pp. 3722-3733. , DOI 10.1529/biophysj.103.033803Fernandez, R.M., Riske, K.A., Amaral, L.Q., Itri, R., Lamy, M.T., (2008) Biochim. Biophys. Acta, 1778, p. 907. , BIOJAU 0005-2736 10.1016/j.bbamem.2007.12.005Spinozzi, F., Paccamiccio, L., Mariani, P., Amaral, L.Q., (2010) Langmuir, 26, p. 6484. , LANGD5 0743-7463 10.1021/la9039623Riske, K.A., Nascimento, O.R., Peric, M., Bales, B.L., Lamy-Freund, M.T., Probing DMPG vesicle surface with a cationic aqueous soluble spin label (1999) Biochimica et Biophysica Acta - Biomembranes, 1418 (1), pp. 133-146. , DOI 10.1016/S0005-2736(99)00019-X, PII S000527369900019XRiske, K.A., Fernandez, R.M., Nascimento, O.R., Bales, B.L., Lamy-Freund, M.T., DMPG gel-fluid thermal transition monitored by a phospholipid spin labeled at the acyl chain end (2003) Chemistry and Physics of Lipids, 124 (1), pp. 69-80. , DOI 10.1016/S0009-3084(03)00046-XDuarte, E.L., Oliveira, T.R., Alves, D.S., Micol, V., Lamy, M.T., On the interaction of the anthraquinone barbaloin with negatively charged DMPG bilayers (2008) Langmuir, 24 (8), pp. 4041-4049. , DOI 10.1021/la703896wAlakoskela, J.-M.I., Kinnunen, P.K.J., Thermal phase behavior of DMPG: The exclusion of continuous network and dense aggregates (2007) Langmuir, 23 (8), pp. 4203-4213. , DOI 10.1021/la062875iRiske, K.A., Politi, M.J., Reed, W.F., Lamy-Freund, M.T., Temperature and ionic strength dependent light scattering of DMPG dispersions (1997) Chemistry and Physics of Lipids, 89 (1), pp. 31-44. , DOI 10.1016/S0009-3084(97)00058-3, PII S0009308497000583Riske, K.A., Amaral, L.Q., Lamy, M.T., (2009) Langmuir, 25, p. 10083. , LANGD5 0743-7463 10.1021/la9012137Alakoskela, J.-M., Parry, M.J., Kinnunen, P.K.J., (2010) Langmuir, 26, p. 4892. , LANGD5 0743-7463 10.1021/la100411pHeimburg, T., Biltonen, R.L., (1994) Biochemistry, 33, p. 9477. , LANGD5 0006-2960 10.1021/bi00198a013Schneider, M.F., Marsh, D., Jahn, W., Kloesgen, B., Heimburg, T., Network formation of lipid membranes: Triggering structural transitions by chain melting (1999) Proceedings of the National Academy of Sciences of the United States of America, 96 (25), pp. 14312-14317. , DOI 10.1073/pnas.96.25.14312Meyer, H.W., Richter, W., Rettig, W., Stumpf, M., Bilayer fragments and bilayered micelles (bicelles) of dimyristoylphosphatidylglycerol (DMPG) are induced by storage in distilled water at 4°C (2001) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 183-185, pp. 495-504. , DOI 10.1016/S0927-7757(01)00561-1, PII S0927775701005611Salonen, I.S., Eklund, K.K., Virtanen, J.A., Kinnunen, P.K.J., Comparison of the effects of NaCl on the thermotropic behaviour of sn-1' and sn-3' stereoisomers of 1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol (1989) Biochimica et Biophysica Acta - Biomembranes, 982 (2), pp. 205-215. , DOI 10.1016/0005-2736(89)90056-4Barroso, R.P., Riske, K.A., Henriques, V.B., Lamy, M.T., (2010) Langmuir, 26, p. 13805. , LANGD5 0743-7463 10.1021/la101784wLamy-Freund, M.T., Riske, K.A., The peculiar thermo-structural behavior of the anionic lipid DMPG (2003) Chemistry and Physics of Lipids, 122 (1-2), pp. 19-32. , DOI 10.1016/S0009-3084(02)00175-5, PII S0009308402001755Leontidis, E., Aroti, A., Belloni, L., (2009) J. Phys. Chem. B, 113, p. 1447. , 1520-6106 10.1021/jp809443dEpand, R.M., Gabel, B., Epand, R.F., Sen, A., Hui, S.-W., Muga, A., Surewicz, W.K., (1992) Biophys. J., 63, p. 327. , BIOJAU 0006-3495 10.1016/S0006-3495(92)81618-1Koshinuma, M., Tajima, K., Nakamura, A., Gershfeld, N.L., (1999) Langmuir, 15, p. 3430. , 0743-7463 10.1021/la981200fRiske, K.A., Barroso, R.P., Vequi-Suplicy, C.C., Germano, R., Henriques, V.B., Lamy, M.T., (2009) Biochim. Biophys. Acta, 1788, p. 954. , BIOJAU 0005-2736 10.1016/j.bbamem.2009.01.007Epand, R.M., Hui, S.-W., (1986) FEBS Lett., 209, p. 257. , FEBLAL 0014-5793 10.1016/0014-5793(86)81123-1Cevc, G., (1993) Chem. Phys. Lipids, 64, p. 163. , CPLIA4 0009-3084 10.1016/0009-3084(93)90064-AKodama, M., Miyata, T., Effect of the head group of phospholipids on the acyl-chain packing and structure of their assemblies as revealed by microcalorimetry and electron microscopy (1996) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 109, pp. 283-289. , DOI 10.1016/0927-7757(95)03461-7Koynova, R., Liquid crystalline phase metastability of phosphatidylglycerols (1997) Chemistry and Physics of Lipids, 89 (1), pp. 67-73. , DOI 10.1016/S0009-3084(97)00060-1, PII S0009308497000601Zhang, Y.-P., Lewis, R.N.A.H., McElhaney, R.N., (1997) Biophys. J., 72, p. 779. , BIOJAU 0006-3495 10.1016/S0006-3495(97)78712-5Goldman, C., Riske, K.A., Lamy-Freund, M.T., (1999) Phys. Rev. e, 60, p. 7349. , PLEEE8 1539-3755 10.1103/PhysRevE.60.7349Goldman, C., Modified surface fluctuations by impurity binding in amphiphilic dispersions (2001) Journal of Chemical Physics, 114 (14), pp. 6242-6248. , DOI 10.1063/1.1355239Forsyth, Jr.P.A., Marčelja, S., Mitchell, D.J., Ninham, B.W., (1977) Biochim. Biophys. Acta, 469, p. 335. , JCPSA6 0005-2736 10.1016/0005-2736(77)90169-9Kumaran, V., Instabilities due to charge-density-curvature coupling in charged membranes (2000) Physical Review Letters, 85 (23), pp. 4996-4999. , DOI 10.1103/PhysRevLett.85.4996Sung, W., Choi, E., Kim, Y.W., Static and dynamic correlations in a charged membrane (2006) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74 (3), p. 031907. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.74.031907&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.74.031907Taheri-Araghi, S., Ha, B.-Y., (2010) Langmuir, 26, p. 14737. , LANGD5 0743-7463 10.1021/la102052rLipowsky, R., (1991) Nature, 349, p. 475. , NATUAS 0028-0836 10.1038/349475a0Sackmann, E., (1994) FEBS Lett., 346, p. 3. , FEBLAL 0014-5793 10.1016/0014-5793(94)00484-6Claessens, M.M.A.E., Van Oort, B.F., Leermakers, F.A.M., Hoekstra, F.A., Stuart, M.A.C., Charged lipid vesicles: Effects of salts on bending rigidity, stability, and size (2004) Biophysical Journal, 87 (6), pp. 3882-3893. , DOI 10.1529/biophysj.103.036772Marsh, D., Elastic curvature constants of lipid monolayers and bilayers (2006) Chemistry and Physics of Lipids, 144 (2), pp. 146-159. , DOI 10.1016/j.chemphyslip.2006.08.004, PII S0009308406001472Li, X.-J., Schick, M., (2000) Biophys. J., 78, p. 34. , BIOJAU 0006-3495 10.1016/S0006-3495(00)76570-2Komura, S., Shirotori, H., Kato, T., (2003) J. Chem. Phys., 119, p. 1157. , JCPSA6 0021-9606 10.1063/1.1579675Goldstein, R.E., Leibler, S., (1988) Phys. Rev. Lett., 61, p. 2213. , PRLTAO 0031-9007 10.1103/PhysRevLett.61.2213Goldstein, R.E., Leibler, S., (1989) Phys. Rev. A, 40, p. 1025. , PLRAAN 1050-2947 10.1103/PhysRevA.40.1025Träuble, H., Eibl, H., (1974) Proc. Natl. Acad. Sci. USA, 71, p. 214. , PNASA6 0027-8424 10.1073/pnas.71.1.214Jähnig, F., (1976) Biophys. Chem., 4, p. 309. , BICIAZ 0301-4622 10.1016/0301-4622(76)80012-9Träuble, H., Teubner, M., Woolley, P., Eibl, H., (1976) Biophys. Chem., 4, p. 319. , BICIAZ 0301-4622 10.1016/0301-4622(76)80013-0Watts, A., Harlos, K., Maschke, W., Marsh, D., (1978) Biochim. Biophys. Acta, 510, p. 63. , BICIAZ 0005-2736 10.1016/0005-2736(78)90130-XCevc, G., Watts, A., Marsh, D., (1980) FEBS Lett., 120, p. 267. , FEBLAL 0014-5793 10.1016/0014-5793(80)80313-9Cevc, G., Watts, A., Marsh, D., (1981) Biochemistry, 20, p. 4955. , FEBLAL 0006-2960 10.1021/bi00520a023Copeland, B.R., Andersen, H.C., (1982) Biochemistry, 21, p. 2811. , FEBLAL 0006-2960 10.1021/bi00541a001Riske, K.A., Dobereiner, H.-G., Lamy-Freund, M.T., Gel-fluid transition in dilute versus concentrated DMPG aqueous dispersions (2002) Journal of Physical Chemistry B, 106 (2), pp. 239-246. , DOI 10.1021/jp011584+Riske, K.A., Döbereiner, H.G., Lamy-Freund, M.T., (2003) J. Phys. Chem. B, 107, p. 5391. , 1520-6106 10.1021/jp027077pEisenberg, M., Gresalfi, T., Riccio, T., McLaughlin, S., (1979) Biochemistry, 18, p. 5213. , JPCBFK 0006-2960 10.1021/bi00590a028Kurland, R., Newton, C., Nir, S., Papahadjopoulos, D., (1979) Biochim. Biophys. Acta, 551, p. 137. , JPCBFK 0005-2736 10.1016/0005-2736(79)90360-2Toko, K., Yamafuji, K., (1980) Chem. Phys. Lipids, 26, p. 79. , CPLIA4 0009-3084 10.1016/0009-3084(80)90013-4Loosley-Millman, M.E., Rand, R.P., Parsegian, V.A., (1982) Biophys. J., 40, p. 221. , BIOJAU 0006-3495 10.1016/S0006-3495(82)84477-9Lakhdar-Ghazal, F., Tichadou, J.-L., Tocanne, J.-F., (1983) Eur. J. Biochem., 134, p. 531. , EJBCAI 0014-2956 10.1111/j.1432-1033.1983.tb07599.xHauser, H., Shipley, G.G., (1983) Biochemistry, 22, p. 2171. , EJBCAI 0006-2960 10.1021/bi00278a018Marra, J., (1986) Biophys. J., 50, p. 815. , BIOJAU 0006-3495 10.1016/S0006-3495(86)83522-6Eklund, K.K., Virtanen, J.A., Vuori, K., Patrikainen, J., Kinnunen, P.K.J., (1987) Biochemistry, 26, p. 7542. , BIOJAU 0006-2960 10.1021/bi00398a002Lakhdar-Ghazal, F., Tocanne, J.-F., (1988) Biochim. Biophys. Acta, 943, p. 19. , BIOJAU 0005-2736 10.1016/0005-2736(88)90342-2Lotta, T.I., Salonen, I.S., Virtanen, J.A., Eklund, K.K., Kinnunen, P.K.J., (1988) Biochemistry, 27, p. 8158. , BIOJAU 0006-2960 10.1021/bi00421a026Eklund, K.K., Salonen, I.S., Kinnunen, P.K.J., Monovalent cation dependent phase behaviour of dipalmitoylphosphatidylglycerol (1989) Chemistry and Physics of Lipids, 50 (1), pp. 71-78. , DOI 10.1016/0009-3084(89)90028-5McLaughlin, S., (1989) Annu. Rev. Biophys. Biophys. Chem., 18, p. 113. , ABPBBK 0084-6589 10.1146/annurev.bb.18.060189.000553Kraayenhof, R., Sterk, G.J., Wong Fong Sang, H.W., Krab, K., Epand, R.M., Monovalent cations differentially affect membrane surface properties and membrane curvature, as revealed by fluorescent probes and dynamic light scattering (1996) Biochimica et Biophysica Acta - Biomembranes, 1282 (2), pp. 293-302. , DOI 10.1016/0005-2736(96)00069-7Tamashiro, M.N., Henriques, V.B., Lamy, M.T., Aqueous suspensions of charged spherical colloids: Dependence of the surface charge on ionic strength, acidity, and colloid concentration (2005) Langmuir, 21 (24), pp. 11005-11016. , DOI 10.1021/la051211qGaridel, P., Blume, A., 1,2-Dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) monolayers: Influence of temperature, pH, ionic strength and binding of alkaline earth cations (2005) Chemistry and Physics of Lipids, 138 (1-2), pp. 50-59. , DOI 10.1016/j.chemphyslip.2005.08.001, PII S0009308405001210Yang, Y., Mayer, K.M., Hafner, J.H., Quantitative membrane electrostatics with the atomic force microscope (2007) Biophysical Journal, 92 (6), pp. 1966-1974. , http://www.biophysj.org/cgi/reprint/92/6/1966.pdf, DOI 10.1529/biophysj.106.093328Kinoshita, M., Kato, S., Takahashi, H., (2009) Chem. Phys. Lipids, 161, p. 1. , CPLIA4 0009-3084 10.1016/j.chemphyslip.2009.06.143Meijer, L.A., Leermakers, F.A.M., Nelson, A., (1994) Langmuir, 10, p. 1199. , LANGD5 0743-7463 10.1021/la00016a038Pandit, S.A., Berkowitz, M.L., (2002) Biophys. J., 82, p. 1818. , BIOJAU 0006-3495 10.1016/S0006-3495(02)75532-XGurtovenko, A.A., Vattulainen, I., (2008) J. Phys. Chem. B, 112, p. 4629. , JPCBFK 1520-6106 10.1021/jp8001993Kaznessis, Y.N., Kim, S., Larson, R.G., (2002) Biophys. J., 82, p. 1731. , BIOJAU 0006-3495 10.1016/S0006-3495(02)75525-2Murzyn, K., Rog, T., Pasenkiewicz-Gierula, M., Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane (2005) Biophysical Journal, 88 (2), pp. 1091-1103. , DOI 10.1529/biophysj.104.048835Elmore, D.E., Molecular dynamics simulation of a phosphatidylglycerol membrane (2006) FEBS Letters, 580 (1), pp. 144-148. , DOI 10.1016/j.febslet.2005.11.064, PII S0014579305014365Pickholz, M., Oliveira Jr., O.N., Skaf, M.S., Interactions of chlorpromazine with phospholipid monolayers: Effects of the ionization state of the drug (2007) Biophysical Chemistry, 125 (2-3), pp. 425-434. , DOI 10.1016/j.bpc.2006.10.010, PII S0301462206003036Zhao, W., Rog, T., Gurtovenko, A.A., Vattulainen, I., Karttunen, M., Atomic-scale structure and electrostatics of anionic palmitoyloleoylphosphatidylglycerol lipid bilayers with Na+ counterions (2007) Biophysical Journal, 92 (4), pp. 1114-1124. , http://www.biophysj.org/cgi/reprint/92/4/1114.pdf, DOI 10.1529/biophysj.106.086272Zhao, W., Róg, T., Gurtovenko, A.A., Vattulainen, I., Karttunen, M., (2008) Biochimie, 90, p. 930. , BICMBE 0300-9084 10.1016/j.biochi.2008.02.025Yi, M., Nymeyer, H., Zhou, H.-X., (2008) Phys. Rev. Lett., 101, p. 038103. , PRLTAO 0031-9007 10.1103/PhysRevLett.101.038103Hénin, J., Shinoda, W., Klein, M.L., (2009) J. Phys. Chem. B, 113, p. 6958. , JPCBFK 1520-6106 10.1021/jp900645zDoniach, S., (1978) J. Chem. Phys., 68, p. 4912. , JCPSA6 0021-9606 10.1063/1.435647Caillé, A., Pink, D., De Verteuil, F., Zuckermann, M.J., (1980) Can. J. Phys., 58, p. 581. , CJPHAD 0008-4204 10.1139/p80-083Mouritsen, O.G., Boothroyd, A., Harris, R., Jan, N., Lookman, T., MacDonald, L., Pink, D.A., Zuckermann, M.J., (1983) J. Chem. Phys., 79, p. 2027. , JCPSA6 0021-9606 10.1063/1.445987Mouritsen, O.G., (1991) Chem. Phys. Lipids, 57, p. 179. , CPLIA4 0009-3084 10.1016/0009-3084(91)90075-MJerala, R., Almeida, P.F.F., Biltonen, R.L., (1996) Biophys. J., 71, p. 609. , BIOJAU 0006-3495 10.1016/S0006-3495(96)79261-5Sugár, I.P., Thompson, T.E., Biltonen, R.L., (1999) Biophys. J., 76, p. 2099. , BIOJAU 0006-3495 10.1016/S0006-3495(99)77366-2Michonova-Alexova, E.I., Sugár, I.P., (2002) Biophys. J., 83, p. 1820. , BIOJAU 0006-3495 10.1016/S0006-3495(02)73947-7Kharakoz, D.P., Panchelyuga, M.S., Tiktopulo, E.I., Shlyapnikova, E.A., Critical temperatures and a critical chain length in saturated diacylphosphatidylcholines: calorimetric, ultrasonic and Monte Carlo simulation study of chain-melting/ordering in aqueous lipid dispersions (2007) Chemistry and Physics of Lipids, 150 (2), pp. 217-228. , DOI 10.1016/j.chemphyslip.2007.08.004, PII S0009308407004203Cohen, J.A., Cohen, M., (1981) Biophys. J., 36, p. 623. , BIOJAU 0006-3495 10.1016/S0006-3495(81)84756-XCohen, J.A., Cohen, M., (1984) Biophys. J., 46, p. 487. , BIOJAU 0006-3495 10.1016/S0006-3495(84)84045-XNaydenov, A., Pincus, P.A., Safran, S.A., Equilibrium domains on heterogeneously charged surfaces (2007) Langmuir, 23 (24), pp. 12016-12023. , DOI 10.1021/la702085xBrewster, R., Pincus, P.A., Safran, S.A., (2008) Phys. Rev. Lett., 101, p. 128101. , 0031-9007 10.1103/PhysRevLett.101.128101Sarabadani, J., Naji, A., Dean, D.S., Horgan, R.R., Podgornik, R., (2010) J. Chem. Phys., 133, p. 174702. , JCPSA6 0021-9606 10.1063/1.3497039Naji, A., Dean, D.S., Sarabadani, J., Horgan, R.R., Podgornik, R., (2010) Phys. Rev. Lett., 104, p. 060601. , PRLTAO 0031-9007 10.1103/PhysRevLett.104.060601Leontidis, E., Aroti, A., Belloni, L., Dubois, M., Zemby, T., Effects of monovalent anions of the Hofmeister series on DPPC lipid bilayers part II: Modeling the perpendicular and lateral equation-of-state (2007) Biophysical Journal, 93 (5), pp. 1591-1607. , http://www.biophysj.org/cgi/reprint/93/5/1591, DOI 10.1529/biophysj.107.109264Baytekin, H.T., Patashinski, A.Z., Branicki, M., Baytekin, B., Soh, S., Grzybowski, B.A., (2011) Science, 333, p. 308. , 0036-8075 10.1126/science.1201512McNaught, A.D., Wilkinson, A., (1997) IUPAC, Compendium of Chemical Terminology, , http://goldbook.iupac.org/C01048.html, http://goldbook.iupac.org/P04667.html Blackwell Scientific, OxfordLyklema, J., Overcharging, charge reversal: Chemistry or physics? (2006) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 291 (1-3), pp. 3-12. , DOI 10.1016/j.colsurfa.2006.06.043, PII S0927775706005000Lyklema, J., (2009) Adv. Colloid Interface Sci., 147-148, p. 205. , ACISB9 0001-8686 10.1016/j.cis.2008.12.002Travesset, A., Vangaveti, S., (2009) J. Chem. Phys., 131, p. 185102. , JCPSA6 0021-9606 10.1063/1.3257735Netz, R.R., (1999) Phys. Rev. e, 60, p. 3174. , PLEEE8 1539-3755 10.1103/PhysRevE.60.3174Levin, Y., (2009) Phys. Rev. Lett., 102, p. 147803. , PRLTAO 0031-9007 10.1103/PhysRevLett.102.147803Levin, Y., Dos Santos, A.P., Diehl, A., (2009) Phys. Rev. Lett., 103, p. 257802. , PRLTAO 0031-9007 10.1103/PhysRevLett.103.257802Dos Santos, A.P., Diehl, A., Levin, Y., (2010) Langmuir, 26, p. 10778. , LANGD5 0743-7463 10.1021/la100604kDos Santos, A.P., Levin, Y., (2010) J. Chem. Phys., 133, p. 154107. , JCPSA6 0021-9606 10.1063/1.3505314Tamashiro, M.N., Constantino, M.A., (2010) J. Phys. Chem. B, 114, p. 3583. , JPCBFK 1520-6106 10.1021/jp911898tCevc, G., Marsh, D., (1983) J. Phys. Chem., 87, p. 376. , JPCHAX 0022-3654 10.1021/j100226a002Ben-Yaakov, D., Andelman, D., Podgornik, R., (2010) J. Chem. Phys., 134, p. 074705. , JCPSA6 0021-9606 10.1063/1.3549915Lee, T.D., Yang, C.N., (1952) Phys. Rev., 87, p. 410. , 0031-899X 10.1103/PhysRev.87.410Baxter, R.J., (1982) Exactly Solved Models in Statistical Mechanics, p. 24. , Academic Press, LondonStanley, H.E., (1971) Introduction to Phase Transitions and Critical Phenomena, p. 260. , Clarendon Press, OxfordOitmaa, J., (1981) J. Phys. A, 14, p. 1159. , JPHAC5 0305-4470 10.1088/0305-4470/14/5/035Landau, D.P., Binder, K., (1985) Phys. Rev. B, 31, p. 5946. , PRBMDO 1098-0121 10.1103/PhysRevB.31.5946Tröster, A., (2010) Phys. Rev. B, 81, p. 012406. , PRBMDO 1098-0121 10.1103/PhysRevB.81.012406Ashkin, J., Teller, E., (1943) Phys. Rev., 64, p. 178. , PHRVAO 0031-899X 10.1103/PhysRev.64.178Ditzian, R.V., Banavar, J.R., Grest, G.S., Kadanoff, L.P., (1980) Phys. Rev. B, 22, p. 2542. , PRBMDO 1098-0121 10.1103/PhysRevB.22.2542Pawlicki, P., Rogiers, J., (1995) Physica A, 214, p. 277. , PHYADX 0378-4371 10.1016/0378-4371(94)00273-VPawlicki, P., Musial, G., Kamieniarz, G., Rogiers, J., (1997) Physica A, 242, p. 281. , PHYADX 0378-4371 10.1016/S0378-4371(97)00216-1Nielsen, L.K., Bjørnholm, T., Mouritsen, O.G., (2000) Nature, 404, p. 352. , NATUAS 0028-0836 10.1038/35006162Nielsen, L.K., Bjornholm, T., Mouritsen, O.G., Thermodynamic and real-space structural evidence of a 2D critical point in phospholipid monolayers (2007) Langmuir, 23 (23), pp. 11684-11692. , DOI 10.1021/la7016352Doniach, S., (1979) J. Chem. Phys., 70, p. 4587. , JCPSA6 0021-9606 10.1063/1.437292Marder, M., Frisch, H.L., Langer, J.S., McConnell, H.M., (1984) Proc. Natl. Acad. Sci. USA, 81, p. 6559. , PNASA6 0027-8424 10.1073/pnas.81.20.6559Carlson, J.M., Sethna, J.P., (1987) Phys. Rev. A, 36, p. 3359.

    Phase Transitions And Spatially Ordered Counterion Association In Ionic-lipid Membranes: Theory Versus Experiment

    No full text
    Aqueous dispersions of phosphatidylglycerol (PG) lipids may present an anomalous chain-melting transition at low ionic strengths, as seen by different experimental techniques such as calorimetry or light scattering. The anomaly disappears at high ionic strengths or for longer acyl-chain lengths. In this article, we use a statistical model for the bilayer that distinguishes both lipid chain and headgroup states in order to compare model and experimental thermotropic and electrical properties. The effective van der Waals interactions among hydrophobic chains compete with the electrostatic repulsions between polar headgroups, which may be ionized (counterion dissociated) or electrically neutral (associated with counterions). Electric degrees of freedom introduce new thermotropic charge-ordered phases in which headgroup charges may be spatially ordered, depending on the electrolyte ionic strength, introducing a new rationale for experimental data on PGs. The thermal phases presented by the model for different chain lengths, at fixed ionic strength, compare well with an experimental phase diagram constructed on the basis of differential scanning calorimetry profiles. In the case of dispersions of DMPG (dimyristoyl phosphatidylglycerol) with added monovalent salt, the model properties reproduce the main features displayed by data from differential scanning calorimetry as well as the characteristic profile for the degree of ionization of the bilayer surface across the anomalous transition region, obtained from the theoretical interpretation of electrokinetic (conductivity and electrophoretic mobility) measurements. © 2011 American Chemical Society.27211313013143Nagle, J.F., (1980) Annu. Rev. Phys. Chem., 31, pp. 157-195Nagle, J.F., Tristam-Nagle, S., (2000) Biochim. Biophys. Acta, 1469, pp. 159-195Tristam-Nagle, S., Nagle, J.F., (2004) Chem. Phys. Lipids, 127, pp. 3-14Cevc, G., Marsh, D., (1987) Phospholipid Bilayers: Physical Principles and Models, , Wiley Interscience: New YorkMarsh, D., (1991) Chem. Phys. Lipids, 57, pp. 109-120Cevc, G., (1993) Phospholipids Handbook, , Marcel Dekker: New YorkKoynova, R., Caffrey, M., (1998) Biochim. Biophys. Acta, 1376, pp. 91-145Koynova, R., Caffrey, M., Corrigendum (2001) Biochim. Biophys. Acta, 1513, p. 82Heimburg, T., (2007) Thermal Biophysics of Membranes, , Wiley-VCH: Weinheim, GermanyCevc, G., (1990) Biochim. Biophys. Acta, 1031, pp. 311-382Cevc, G., (1993) Chem. Phys. Lipids, 64, pp. 163-186Dowhan, W., (1997) Annu. Rev. Biochem., 66, pp. 199-232Dumas, F., Lebrun, M.C., Tocanne, J.-F., (1999) FEBS Lett., 458, pp. 271-277Cantor, R.S., (1999) Biophys. J., 76, pp. 2625-2639Bezrukov, S.M., (2000) Curr. Opin. Colloid Interface Sci., 5, pp. 237-243Dowhan, W., Bogdanov, M., (2009) Annu. Rev. Biochem., 78, pp. 515-540Huang, K.C., Ramamurthi, K.S., (2010) Mol. Microbiol., 76, pp. 822-832Lohner, K., (2001) Development of Novel Antimicrobial Agents: Emerging Strategies, , Horizon Scientific Press: Wymondham, EnglandLohner, K., (2009) Gen. Physiol. Biophys., 28, pp. 105-116Nagle, J.F., Scott, Jr.H.L., (1978) Biochim. Biophys. Acta, 513, pp. 236-243Heimburg, T., (2010) Biophys. Chem., 150, pp. 2-22Matsumoto, K., (2001) Mol. Microbiol., 39, pp. 1427-1433Lewis, R.N.A.H., McElhaney, R.N., (2009) Biochim. Biophys. Acta, 1788, pp. 2069-2079Roy, H., (2009) IUBMB Life, 61, pp. 940-953Prossnigg, F., Hickel, A., Pabst, G., Lohner, K., (2010) Biophys. Chem., 150, pp. 129-135Lamy-Freund, M.T., Riske, K.A., (2003) Chem. Phys. Lipids, 122, pp. 19-32Riske, K.A., Amaral, L.Q., Lamy-Freund, M.T., (2001) Biochim. Biophys. Acta, 1511, pp. 297-308Riske, K.A., Amaral, L.Q., Döbereiner, H.-G., Lamy, M.T., (2004) Biophys. J., 86, pp. 3722-3733Fernandez, R.M., Riske, K.A., Amaral, L.Q., Itri, R., Lamy, M.T., (2008) Biochim. Biophys. Acta, 1778, pp. 907-916Spinozzi, F., Paccamiccio, L., Mariani, P., Amaral, L.Q., (2010) Langmuir, 26, pp. 6484-6493Riske, K.A., Nascimento, O.R., Peric, M., Bales, B.L., Lamy-Freund, M.T., (1999) Biochim. Biophys. Acta, 1418, pp. 133-146Riske, K.A., Fernandez, R.M., Nascimento, O.R., Bales, B.L., Lamy-Freund, M.T., (2003) Chem. Phys. Lipids, 124, pp. 69-80Duarte, E.L., Oliveira, T.R., Alves, D.S., Micol, V., Lamy, M.T., (2008) Langmuir, 24, pp. 4041-4049Alakoskela, J.-M.I., Kinnunen, P.K.J., (2007) Langmuir, 23, pp. 4203-4213Riske, K.A., Politi, M.J., Reed, W.F., Lamy-Freund, M.T., (1997) Chem. Phys. Lipids, 89, pp. 31-44Riske, K.A., Amaral, L.Q., Lamy, M.T., (2009) Langmuir, 25, pp. 10083-10091Alakoskela, J.-M., Parry, M.J., Kinnunen, P.K.J., (2010) Langmuir, 26, pp. 4892-4900Heimburg, T., Biltonen, R.L., (1994) Biochemistry, 33, pp. 9477-9488Schneider, M.F., Marsh, D., Jahn, W., Kloesgen, B., Heimburg, T., (1999) Proc. Natl. Acad. Sci. U.S.A., 96, pp. 14312-14317Meyer, H.W., Richter, W., Rettig, W., Stumpf, M., (2001) Colloids Surf., A, 183-185, pp. 495-504Salonen, I.S., Eklund, K.K., Virtanen, J.A., Kinnunen, P.K.J., (1989) Biochim. Biophys. Acta, 982, pp. 205-215Barroso, R.P., Riske, K.A., Henriques, V.B., Lamy, M.T., (2010) Langmuir, 26, pp. 13805-13814Cullis, P.R., De Kruijff, B., (1979) Biochim. Biophys. Acta, 559, pp. 399-420Koynova, R., Caffrey, M., (2002) Chem. Phys. Lipids, 115, pp. 107-219Van Dam, L., Karlsson, G., Edwards, K., (2004) Biochim. Biophys. Acta, 1664, pp. 241-256Katsaras, J., Harroun, T.A., Pencer, J., Nieh, M.-P., (2005) Naturwissenschaften, 92, pp. 355-366Racey, T.J., Singer, M.A., Finegold, L., Rochon, P., (1989) Chem. Phys. Lipids, 49, pp. 271-288Kleinschmidt, J.H., Tamm, L.K., (2002) Biophys. J., 83, pp. 994-1003Enoki, T.A., (2010) Light-Scattering Characterization of Aqueous Dispersions of Anionic-Lipid Aggregates, , M.S. Dissertation, Universidade de São Paulo, São Paulo, BrazilEnoki, T.A., Nomura, D.A., Alves, J.R., Henriques, V.B., Lamy, M.T., 8th EBSA European biophysics congress, Budapest, Hungary (2011) Eur. Biophys. J., 40 (SUPPL. 1), pp. S200. , abstract P-619. DOI: 10.1007/s00249-011-0734-zEpand, R.M., Gabel, B., Epand, R.F., Sen, A., Hui, S.-W., Muga, A., Surewicz, W.K., (1992) Biophys. J., 63, pp. 327-332Koshinuma, M., Tajima, K., Nakamura, A., Gershfeld, N.L., (1999) Langmuir, 15, pp. 3430-3436Riske, K.A., Barroso, R.P., Vequi-Suplicy, C.C., Germano, R., Henriques, V.B., Lamy, M.T., (2009) Biochim. Biophys. Acta, 1788, pp. 954-963Epand, R.M., Hui, S.-W., (1986) FEBS Lett., 209, pp. 257-260Kodama, M., Miyata, T., (1996) Colloids Surf., A, 109, pp. 283-289Koynova, R., (1997) Chem. Phys. Lipids, 89, pp. 67-73Zhang, Y.-P., Lewis, R.N.A.H., McElhaney, R.N., (1997) Biophys. J., 72, pp. 779-793Chevalier, Y., Zemb, T., (1990) Rep. Prog. Phys., 53, pp. 279-371Jusufi, A., Hynninen, A.-P., Haataja, M., Panagiotopoulos, A.Z., (2009) J. Phys. Chem. B, 113, pp. 6314-6320Moreira, L., Firoozabadi, A., (2010) Langmuir, 26, pp. 15177-15191Li, X.-J., Schick, M., (2000) Biophys. J., 78, pp. 34-46Komura, S., Shirotori, H., Kato, T., (2003) J. Chem. Phys., 119, pp. 1157-1164Harries, D., Podgornik, R., Parsegian, V.A., Mar-Or, E., Andelman, D., (2006) J. Chem. Phys., 124, p. 224702Jho, Y.S., Kim, M.W., Safran, S.A., Pincus, P.A., (2010) Eur. Phys. J. E, 31, pp. 207-214Goldman, C., Riske, K.A., Lamy-Freund, M.T., (1999) Phys. Rev. E, 60, pp. 7349-7353Goldman, C., (2001) J. Chem. Phys., 114, pp. 6242-6248Träuble, H., Eibl, H., (1974) Proc. Natl. Acad. Sci. U.S.A., 71, pp. 214-219Jähnig, F., (1976) Biophys. Chem., 4, pp. 309-318Träuble, H., Teubner, M., Woolley, P., Eibl, H., (1976) Biophys. Chem., 4, pp. 319-342Forsyth, Jr.P.A., Marčelja, S., Mitchell, D.J., Ninham, B.W., (1977) Biochim. Biophys. Acta, 469, pp. 335-344Watts, A., Harlos, K., Maschke, W., Marsh, D., (1978) Biochim. Biophys. Acta, 510, pp. 63-74Copeland, B.R., Andersen, H.C., (1982) Biochemistry, 21, pp. 2811-2820Gouy, G., (1909) C. R. Acad. Sci., 149, pp. 654-657Gouy, G., (1910) J. Physique (Paris), 9, pp. 457-468Gouy, G., (1917) Ann. Phys. (Paris), 7, pp. 129-184Chapman, D.L., (1913) Philos. Mag., 25, pp. 475-481Israelachvili, J.N., (1992) Intermolecular and Surface Forces, pp. 213-259. , 2 nd ed. Academic Press: LondonAndelman, D., Electrostatic properties of membranes: The poisson-boltzmann theory (1995) Handbook of Biological Physics, 1, pp. 603-641. , Lipowsky, R. Sackmann, E. Elsevier: AmsterdamNetz, R.R., Orland, H., (2000) Eur. Phys. J. E, 1, pp. 203-214Deserno, M., Holm, C., Cell Model and Poisson-Boltzmann Theory: A Brief Introduction (2001) Proceedings of the NATO Advanced Study Institute on Electrostatic Effects in Soft Matter and Biophysics, pp. 27-50. , Holm, C. Kékicheff, P. Podgornik, R. Kluwer: Dordrecht, The NetherlandsSafran, S.A., (1994) Statistical Thermodynamics of Surfaces, Interfaces and Membranes, pp. 153-167. , Addison-Wesley: Reading, MATamashiro, M.N., Schiessel, H., (2003) Phys. Rev. E, 68, p. 066106Lamm, G., (2003) Rev. Comput. Chem., 19, pp. 147-365Grochowski, P., Trylska, J., (2007) Biopolymers, 89, pp. 93-113Stern, O., (1924) Z. Elektrochem., 30, pp. 508-516Meijer, L.A., Leermakers, F.A.M., Nelson, A., (1994) Langmuir, 10, pp. 1199-1206Pandit, S.A., Berkowitz, M.L., (2002) Biophys. J., 82, pp. 1818-1827Gurtovenko, A.A., Vattulainen, I., (2008) J. Phys. Chem. B, 112, pp. 4629-4634Kaznessis, Y.N., Kim, S., Larson, R.G., (2002) Biophys. J., 82, pp. 1731-1742Murzyn, K., Róg, T., Pasenkiewicz-Gierula, M., (2005) Biophys. J., 88, pp. 1091-1103Elmore, D.E., (2006) FEBS Lett., 580, pp. 144-148Pickholz, M., Oliveira, Jr.O.N., Skaf, M.S., (2007) Biophys. Chem., 125, pp. 425-434Zhao, W., Róg, T., Gurtovenko, A.A., Vattulainen, I., Karttunen, M., (2007) Biophys. J., 92, pp. 1114-1124Zhao, W., Róg, T., Gurtovenko, A.A., Vattulainen, I., Karttunen, M., (2008) Biochimie, 90, pp. 930-938Yi, M., Nymeyer, H., Zhou, H.-X., (2008) Phys. Rev. Lett., 101, p. 038103Hénin, J., Shinoda, W., Klein, M.L., (2009) J. Phys. Chem. B, 113, pp. 6958-6963Kurland, R., Newton, C., Nir, S., Papahadjopoulos, D., (1979) Biochim. Biophys. Acta, 551, pp. 137-147Toko, K., Yamafuji, K., (1980) Chem. Phys. Lipids, 26, pp. 79-99Lakhdar-Ghazal, F., Tichadou, J.-L., Tocanne, J.-F., (1983) Eur. J. Biochem., 134, pp. 531-537Garidel, P., Blume, A., (2005) Chem. Phys. Lipids, 138, pp. 50-59Eisenberg, M., Gresalfi, T., Riccio, T., McLaughlin, S., (1979) Biochemistry, 18, pp. 5213-5223Lakhdar-Ghazal, F., Tocanne, J.-F., (1988) Biochim. Biophys. Acta, 943, pp. 19-27Loosley-Millman, M.E., Rand, R.P., Parsegian, V.A., (1982) Biophys. J., 40, pp. 221-232Hauser, H., Shipley, G.G., (1983) Biochemistry, 22, pp. 2171-2178Kinoshita, M., Kato, S., Takahashi, H., (2009) Chem. Phys. Lipids, 161, pp. 1-10Cevc, G., Watts, A., Marsh, D., (1980) FEBS Lett., 120, pp. 267-270Cevc, G., Watts, A., Marsh, D., (1981) Biochemistry, 20, pp. 4955-4965Eklund, K.K., Salonen, I.S., Kinnunen, P.K.J., (1989) Chem. Phys. Lipids, 50, pp. 71-78Tamashiro, M.N., Henriques, V.B., Lamy, M.T., (2005) Langmuir, 21, pp. 11005-11016Eklund, K.K., Virtanen, J.A., Vuori, K., Patrikainen, J., Kinnunen, P.K.J., (1987) Biochemistry, 26, pp. 7542-7545Kraayenhof, R., Sterk, G.J., Sang, H.W.W.F., Krab, K., Epand, R.M., (1996) Biochim. Biophys. Acta, 1282, pp. 293-302Marra, J., (1986) Biophys. J., 50, pp. 815-825Lotta, T.I., Salonen, I.S., Virtanen, J.A., Eklund, K.K., Kinnunen, P.K.J., (1988) Biochemistry, 27, pp. 8158-8169Yang, Y., Mayer, K.M., Hafner, J.H., (2007) Biophys. J., 92, pp. 1966-1974McLaughlin, S., (1989) Annu. Rev. Biophys. Biophys. Chem., 18, pp. 113-136Egorova, E.M., (1996) Colloids Surf., A, 110, pp. 47-53Egorova, E.M., (1998) Colloids Surf., A, 131, pp. 7-18Egorova, E.M., (1998) Colloids Surf., A, 131, pp. 19-31Lyklema, J., (2006) Colloids Surf., A, 291, pp. 3-12Lyklema, J., (2009) Adv. Colloid Interface Sci., 147-148, pp. 205-213Travesset, A., Vaknin, D., (2006) Europhys. Lett., 74, pp. 181-187Travesset, A., Vangaveti, S., (2009) J. Chem. Phys., 131, p. 185102Doniach, S., (1978) J. Chem. Phys., 68, pp. 4912-4916Caillé, A., Pink, D., De Verteuil, F., Zuckermann, M.J., (1980) Can. J. Phys., 58, pp. 581-611Mouritsen, O.G., Boothroyd, A., Harris, R., Jan, N., Lookman, T., MacDonald, L., Pink, D.A., Zuckermann, M.J., (1983) J. Chem. Phys., 79, pp. 2027-2041Jerala, R., Almeida, P.F.F., Biltonen, R.L., (1996) Biophys. J., 71, pp. 609-615Kharakoz, D.P., Panchelyuga, M.S., Tiktopulo, E.I., Shlyapnikova, E.A., (2007) Chem. Phys. Lipids, 150, pp. 217-228Sugár, I.P., Thompson, T.E., Biltonen, R.L., (1999) Biophys. J., 76, pp. 2099-2110Michonova-Alexova, E.I., Sugár, I.P., (2002) Biophys. J., 83, pp. 1820-1833Mouritsen, O.G., (1991) Chem. Phys. Lipids, 57, pp. 179-194Nielsen, L.K., Bjørnholm, T., Mouritsen, O.G., (2000) Nature, 404, p. 352Nielsen, L.K., Bjørnholm, T., Mouritsen, O.G., (2007) Langmuir, 23, pp. 11684-11692Tamashiro, M.N., Barbetta, C., Germano, R., Henriques, V.B., (2011) Phys. Rev. E, 84, p. 031909. , DOI: 10.1103/PhysRevE.84.031909. This paper presents calculations performed on the fully equivalent mean-field model in the Curie-Weiss (93) formulationThompson, C.J., (1988) Classical Equilibrium Statistical Mechanics, pp. 91-95. , Clarendon Press: Oxford, EnglandSalinas, S.R.A., (2001) Introduction to Statistical Physics, pp. 266-268. , Springer-Verlag: New YorkHelm, C.A., Laxhuber, L., Lösche, M., Möhwald, H., (1986) Colloid Polym. Sci., 264, pp. 46-55Hauser, H., (1991) Chem. Phys. Lipids, 57, pp. 309-325Ranck, J.L., Keira, T., Luzzati, V., (1977) Biochim. Biophys. Acta, 488, pp. 432-441Garidel, P., Richter, W., Rapp, G., Blume, A., (2001) Phys. Chem. Chem. Phys., 3, pp. 1504-1513Meyer, E.E., Lin, Q., Hassenkam, T., Oroudjev, E., Israelachvili, J.N., (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 6839-6842Perkin, S., Kampf, N., Klein, J., (2005) J. Phys. Chem. B, 109, pp. 3832-3837Perkin, S., Kampf, N., Klein, J., (2006) Phys. Rev. Lett., 96, p. 038301Naydenov, A., Pincus, P.A., Safran, S.A., (2007) Langmuir, 23, pp. 12016-12023Brewster, R., Pincus, P.A., Safran, S.A., (2008) Phys. Rev. Lett., 101, p. 128101Sarabadani, J., Naji, A., Dean, D.S., Horgan, R.R., Podgornik, R., (2010) J. Chem. Phys., 133, p. 174702Naji, A., Dean, D.S., Sarabadani, J., Horgan, R.R., Podgornik, R., (2010) Phys. Rev. Lett., 104, p. 060601Baytekin, H.T., Patashinski, A.Z., Branicki, M., Baytekin, B., Soh, S., Grzybowski, B.A., (2011) Science, 333, pp. 308-312Evert, L.L., Leckband, D., Israelachvili, J.N., (1994) Langmuir, 10, pp. 303-315Grigoriev, D., Krustev, R., Miller, R., Pison, U., (1999) J. Phys. Chem. B, 103, pp. 1013-1018Grigoriev, D., Miller, R., Wüstneck, R., Wüstneck, N., Pison, U., Möhwald, H., (2003) J. Phys. Chem. B, 107, pp. 14283-14288Bragg, W.L., Williams, E.J., (1934) Proc. R. Soc. London, Ser. A, 145, pp. 699-730Bragg, W.L., Williams, E.J., (1935) Proc. R. Soc. London, Ser. A, 151, pp. 540-566Williams, E.J., (1935) Proc. R. Soc. London, Ser. A, 152, pp. 231-252Hill, T.L., (1986) An Introduction to Statistical Thermodynamics, pp. 246-252. , Dover: New YorkHuang, K., (1987) Statistical Mechanics, pp. 352-357. , 2 nd ed. John Wiley: New YorkThompson, C.J., (1988) Classical Equilibrium Statistical Mechanics, p. 135. , Clarendon Press: Oxford, EnglandPathria, R.K., (1996) Statistical Mechanics, pp. 321-327. , 2 nd ed. Butterworth-Heinemann: OxfordSalinas, S.R.A., (2001) Introduction to Statistical Physics, pp. 263-266. , Springer-Verlag: New YorkCarneiro, C.E.I., Henriques, V.B., Salinas, S.R., (1989) Physica A, 162, pp. 88-98Lee, T.D., Yang, C.N., (1952) Phys. Rev., 87, pp. 410-419Baxter, R.J., (1989) Exactly Solved Models in Statistical Mechanics, pp. 24-30. , 3rd printingAcademic Press: LondonStanley, H.E., (1971) Introduction to Phase Transitions and Critical Phenomena, pp. 260-264. , Clarendon Press: Oxford, EnglandSun, W.-J., Tristram-Nagle, S., Suter, R.M., Nagle, J.F., (1996) Biophys. J., 71, pp. 885-891Petrache, H.I., Dodd, S.W., Brown, M.F., (2000) Biophys. J., 79, pp. 3172-3192Bloch, J.M., Yun, W., (1990) Phys. Rev. A, 41, pp. 844-862Tanford, C., (1979) Proc. Natl. Acad. Sci. U.S.A., 76, pp. 3318-3319White, S.H., (1980) Proc. Natl. Acad. Sci. U.S.A., 77, pp. 4048-4050Lis, L.J., McAlister, M., Fuller, N., Rand, R.P., Parsegian, V.A., (1982) Biophys. J., 37, pp. 667-672Feng, S.-S., (1999) Langmuir, 15, pp. 998-1010Marsh, D., (2006) Langmuir, 22, pp. 2916-2919Fournier, J.-B., Barbetta, C., (2008) Phys. Rev. Lett., 100, p. 078103Barbetta, C., Imparato, A., Fournier, J.-B., (2010) Eur. Phys. J. E, 31, pp. 333-342Blume, A., (1979) Biochim. Biophys. Acta, 557, pp. 32-44Marsh, D., (1996) Biochim. Biophys. Acta, 1286, pp. 183-223Marčelja, S., (1974) Biochim. Biophys. Acta, 367, pp. 165-176Morrow, M.R., Whitehead, J.P., Lu, D., (1992) Biophys. J., 63, pp. 18-27Callen, H.B., (1985) Thermodynamics and An Introduction to Thermostatistics, pp. 228-231. , 2 nd ed. John Wiley: New YorkArcher, D.G., Wang, P., (1990) J. Phys. Chem. Ref. Data, 19, pp. 371-411. , Bjerrum length calculated by using the experimentally measured water dielectric constant εW = 78.38 at 25° C and 0.1 MPaNetz, R.R., (1999) Phys. Rev. E, 60, pp. 3174-3182Levin, Y., (2009) Phys. Rev. Lett., 102, p. 147803Levin, Y., Dos Santos, A.P., Diehl, A., (2009) Phys. Rev. Lett., 103, p. 257802Dos Santos, A.P., Diehl, A., Levin, Y., (2010) Langmuir, 26, pp. 10778-10783Dos Santos, A.P., Levin, Y., (2010) J. Chem. Phys., 133, p. 154107Tamashiro, M.N., Constantino, M.A., (2010) J. Phys. Chem. B, 114, pp. 3583-3591Cevc, G., Marsh, D., (1983) J. Phys. Chem., 87, pp. 376-379Ben-Yaakov, D., Andelman, D., Podgornik, R., (2010) J. Chem. Phys., 134, p. 074705Barroso, R.P., (2010) Dimyristoyl Phosphatidylglycerol Lipid Dispersions: A Thermo-Structural Study, , Ph.D. Thesis, Universidade de São Paulo, São Paulo, BrazilLipowsky, R., (1991) Nature, 349, pp. 475-481Sackmann, E., (1994) FEBS Lett., 346, pp. 3-16Claessens, M.M.A.E., Van Oort, B.F., Leermakers, F.A.M., Hoekstra, F.A., Stuart, M.A.C., (2004) Biophys. J., 87, pp. 3882-3893Marsh, D., (2006) Chem. Phys. Lipids, 144, pp. 146-159Cevc, G., Thermodynamic Parameters of Phospholipids (1993) Phospholipids Handbook, p. 939. , Cevc, G. Marcel Dekker: New York, Appendix B, Table B1Watts, A., Harlos, K., Marsh, D., (1981) Biochim. Biophys. Acta, 645, pp. 91-96Fukuma, T., Higgins, M.J., Jarvis, S.P., (2007) Phys. Rev. Lett., 98, p. 106101Bedzyk, M.J., Bommarito, G.M., Caffrey, M., Penner, T.L., (1990) Science, 248, pp. 52-56Leontidis, E., Aroti, A., Belloni, L., Dubois, M., Zemb, T., (2007) Biophys. J., 93, pp. 1591-1607Leontidis, E., Aroti, A., Belloni, L., (2009) J. Phys. Chem. B, 113, pp. 1447-1459Tröster, A., (2010) Phys. Rev. B, 81, p. 012406Oitmaa, J., (1981) J. Phys. A: Math. Gen., 14, pp. 1159-1168Landau, D.P., Binder, K., (1985) Phys. Rev. B, 31, pp. 5946-5953Kumaran, V., (2000) Phys. Rev. Lett., 85, pp. 4996-4999Sung, W., Choi, E., Kim, Y.W., (2006) Phys. Rev. E, 74, p. 031907Taheri-Araghi, S., Ha, B.-Y., (2010) Langmuir, 26, pp. 14737-1474
    corecore