280 research outputs found

    Evolutionary Optimization of State Selective Field Ionization for Quantum Computing

    Full text link
    State selective field ionization detection techniques in physics require a specific progression through a complicated atomic state space to optimize state selectivity and overall efficiency. For large principle quantum number n, the theoretical models become computationally intractable and any results are often rendered irrelevant by small deviations from ideal experimental conditions, for example external electromagnetic fields. Several different proposals for quantum information processing rely heavily upon the quality of these detectors. In this paper, we show a proof of principle that it is possible to optimize experimental field profiles in situ by running a genetic algorithm to control aspects of the experiment itself. A simple experiment produced novel results that are consistent with analyses of existing results.Comment: 9 pages, 5 figure

    Search for the Proton Decay Mode proton to neutrino K+ in Soudan 2

    Full text link
    We have searched for the proton decay mode proton to neutrino K+ using the one-kiloton Soudan 2 high resolution calorimeter. Contained events obtained from a 3.56 kiloton-year fiducial exposure through June 1997 are examined for occurrence of a visible K+ track which decays at rest into mu+ nu or pi+ pi0. We found one candidate event consistent with background, yielding a limit, tau/B > 4.3 10^{31} years at 90% CL with no background subtraction.Comment: 13 pages, Latex, 3 tables and 3 figures, Accepted by Physics Letters

    A study of the decay of 187W using a 2 m curved-crystal spectrometer

    Full text link
    The gamma rays in the decay of 187W have been studied using the University of Michigan 2 m curved-crystal spectrometer and a lithium-drifted germanium diode spectrometer. One previously unreported transition has been observed and the energies of all observed transitions have been determined with the curved-crystal spectrometer. Upper limits have been determined for the intensities of possible unobserved gamma rays in the 160-1200 keV region. The relative merits and complementarity of the curved crystal spectrometer and the Ge(Li) spectrometer are discussed. In addition, data are presented concerning the reflectivity of the curved crystal using the germanium planes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/33458/1/0000862.pd

    Predictors of care-giver stress in families of preschool-aged children with developmental disabilities

    Get PDF
    Background This study examined the predictors, mediators and moderators of parent stress in families of preschool-aged children with developmental disability. Method One hundred and five mothers of preschool-aged children with developmental disability completed assessment measures addressing the key variables. Results Analyses demonstrated that the difficulty parents experienced in completing specific caregiving tasks, behaviour problems during these caregiving tasks, and level of child disability, respectively, were significant predictors of level of parent stress. In addition, parents’ cognitive appraisal of care-giving responsibilities had a mediating effect on the relationship between the child’s level of disability and parent stress. Mothers’ level of social support had a moderating effect on the relationship between key independent variables and level of parent stress. Conclusions Difficulty of care-giving tasks, difficult child behaviour during care-giving tasks, and level of child disability are the primary factors which contribute to parent stress. Implications of these findings for future research and clinical practice are outlined

    Active Galactic Nuclei at the Crossroads of Astrophysics

    Get PDF
    Over the last five decades, AGN studies have produced a number of spectacular examples of synergies and multifaceted approaches in astrophysics. The field of AGN research now spans the entire spectral range and covers more than twelve orders of magnitude in the spatial and temporal domains. The next generation of astrophysical facilities will open up new possibilities for AGN studies, especially in the areas of high-resolution and high-fidelity imaging and spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These studies will address in detail a number of critical issues in AGN research such as processes in the immediate vicinity of supermassive black holes, physical conditions of broad-line and narrow-line regions, formation and evolution of accretion disks and relativistic outflows, and the connection between nuclear activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical Symposia Serie

    Coronal Shock Waves, EUV waves, and Their Relation to CMEs. I. Reconciliation of "EIT waves", Type II Radio Bursts, and Leading Edges of CMEs

    Full text link
    We show examples of excitation of coronal waves by flare-related abrupt eruptions of magnetic rope structures. The waves presumably rapidly steepened into shocks and freely propagated afterwards like decelerating blast waves that showed up as Moreton waves and EUV waves. We propose a simple quantitative description for such shock waves to reconcile their observed propagation with drift rates of metric type II bursts and kinematics of leading edges of coronal mass ejections (CMEs). Taking account of different plasma density falloffs for propagation of a wave up and along the solar surface, we demonstrate a close correspondence between drift rates of type II bursts and speeds of EUV waves, Moreton waves, and CMEs observed in a few known events.Comment: 30 pages, 15 figures. Solar Physics, published online. The final publication is available at http://www.springerlink.co

    Detecting a stochastic gravitational wave background with the Laser Interferometer Space Antenna

    Get PDF
    The random superposition of many weak sources will produce a stochastic background of gravitational waves that may dominate the response of the LISA (Laser Interferometer Space Antenna) gravitational wave observatory. Unless something can be done to distinguish between a stochastic background and detector noise, the two will combine to form an effective noise floor for the detector. Two methods have been proposed to solve this problem. The first is to cross-correlate the output of two independent interferometers. The second is an ingenious scheme for monitoring the instrument noise by operating LISA as a Sagnac interferometer. Here we derive the optimal orbital alignment for cross-correlating a pair of LISA detectors, and provide the first analytic derivation of the Sagnac sensitivity curve.Comment: 9 pages, 11 figures. Significant changes to the noise estimate

    Precision measurements of gamma-ray energies up to 2 MeV using a 2 m curved-crystal monochromator

    Full text link
    Precision measurements of gamma-ray energies up to 2 MeV were performed using a 2m curved-crystal monochromator. Effective source activities of less than 40 mCur were used for the measurements of the transitions in the 2 MeV region. In the 150 keV region, effective source activities of less than 200 [mu]Cur may be used. Measurements have been performed on the transitions of energies less than 2150 keV which follow the decay of In116(54 min), Mn56 (2.6 h) and Sc46 (85 d). In addition, results are presented which indicate that the reflection coefficient is approximately linear with respect to wavelength for the second order reflection from the germanium (02) planes in the region of 6-90 mA (2000-135 keV).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31997/1/0000039.pd

    All-particle cosmic ray energy spectrum measured with 26 IceTop stations

    Full text link
    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0{\deg} and 46{\deg}. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles {\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on composition assumption. Spectral indices above the knee range from -3.08 to -3.11 depending on primary mass composition assumption. Moreover, an indication of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure

    An improved method for measuring muon energy using the truncated mean of dE/dx

    Full text link
    The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(E_mu) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure
    • …
    corecore