92 research outputs found

    Image Reconstruction with a LaBr3-based Rotational Modulator

    Full text link
    A rotational modulator (RM) gamma-ray imager is capable of obtaining significantly better angular resolution than the fundamental geometric resolution defined by the ratio of detector diameter to mask-detector separation. An RM imager consisting of a single grid of absorbing slats rotating ahead of an array of a small number of position-insensitive detectors has the advantage of fewer detector elements (i.e., detector plane pixels) than required by a coded aperture imaging system with comparable angular resolution. The RM therefore offers the possibility of a major reduction in instrument complexity, cost, and power. A novel image reconstruction technique makes it possible to deconvolve the raw images, remove sidelobes, reduce the effects of noise, and provide resolving power a factor of 6 - 8 times better than the geometric resolution. A 19-channel prototype RM developed in our laboratory at Louisiana State University features 13.8 deg full-angle field of view, 1.9 deg geometric angular resolution, and the capability of resolving sources to within 35' separation. We describe the technique, demonstrate the measured performance of the prototype instrument, and describe the prospects for applying the technique to either a high-sensitivity standoff gamma-ray imaging detector or a satellite- or balloon-borne gamma-ray astronomy telescope.Comment: submitted to Nuclear Instrument & Methods, special edition: SORMA 2010 on June 16, 201

    Charged particle production in the Pb+Pb system at 158 GeV/c per nucleon

    Get PDF
    Charged particle multiplicities from high multiplicity central interactions of 158 GeV/nucleon Pb ions with Pb target nuclei have been measured in the central and far forward projectile spectator regions using emulsion chambers. Multiplicities are significantly lower than predicted by Monte Carlo simulations. We examine the shape of the pseudorapidity distribution and its dependence on centrality in detail.Comment: 17 pages text plus 12 figures in postscript 12/23/99 -- Add TeX version of sourc

    The Composition of Cosmic Rays at the Knee

    Get PDF
    The observation of a small change in spectral slope, or 'knee' in the fluxes of cosmic rays near energies 10^15 eV has caused much speculation since its discovery over 40 years ago. The origin of this feature remains unknown. A small workshop to review some modern experimental measurements of this region was held at the Adler Planetarium in Chicago, USA in June 2000. This paper summarizes the results presented at this workshop and the discussion of their interpretation in the context of hadronic models of atmospheric airshowers.Comment: 36 pages, 10 figure

    Geospatial analyses identify regional hot spots of diffuse gastric cancer in rural Central America

    Get PDF
    Background: Geospatial technology has facilitated the discovery of disease distributions and etiology and helped target prevention programs. Globally, gastric cancer is the leading infection-associated cancer, and third leading cause of cancer mortality worldwide, with marked geographic variation. Central and South America have a significant burden, particularly in the mountainous regions. In the context of an ongoing population-based case-control study in Central America, our aim was to examine the spatial epidemiology of gastric cancer subtypes and H. pylori virulence factors. Methods: Patients diagnosed with gastric cancer from 2002 to 2013 in western Honduras were identified in the prospective gastric cancer registry at the principal district hospital. Diagnosis was based on endoscopy and confirmatory histopathology. Geospatial methods were applied using the ArcGIS v10.3.1 and SaTScan v9.4.2 platforms to examine regional distributions of the gastric cancer histologic subtypes (Lauren classification), and the H. pylori CagA virulence factor. Getis-Ord-Gi hot spot and Discrete Poisson SaTScan statistics, respectively, were used to explore spatial clustering at the village level (30-50 rural households), with standardization by each village's population. H. pylori and CagA serologic status was determined using the novel H. pylori multiplex assay (DKFZ, Germany). Results: Three hundred seventy-eight incident cases met the inclusion criteria (mean age 63.7, male 66.3%). Areas of higher gastric cancer incidence were identified. Significant spatial clustering of diffuse histology adenocarcinoma was revealed both by the Getis-Ord-GI∗hot spot analysis (P-value < 0.0015; range 0.00003-0.0014; 99%CI), and by the SaTScan statistic (P-value < 0.006; range 0.0026-0.0054). The intestinal subtype was randomly distributed. H. pylori CagA had significant spatial clustering only in association with the diffuse histology cancer hot spot (Getis-Ord-Gi∗P value ≀0.001; range 0.0001-0.0010; SaTScan statistic P value 0.0085). In the diffuse gastric cancer hot spot, the lowest age quartile range was 21-46 years, significantly lower than the intestinal cancers (P = 0.024). Conclusions: Geospatial methods have identified a significant cluster of incident diffuse type adenocarcinoma cases in rural Central America, suggest of a germline genetic association. Further genomic and geospatial analyses to identify potential spatial patterns of genetic, bacterial, and environmental risk factors may be informative

    A study of charged kappa in J/ψ→K±Ksπ∓π0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0

    Full text link
    Based on 58×10658 \times 10^6 J/ψJ/\psi events collected by BESII, the decay J/ψ→K±Ksπ∓π0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0 is studied. In the invariant mass spectrum recoiling against the charged K∗(892)±K^*(892)^{\pm}, the charged Îș\kappa particle is found as a low mass enhancement. If a Breit-Wigner function of constant width is used to parameterize the kappa, its pole locates at (849±77−14+18)−i(256±40−22+46)(849 \pm 77 ^{+18}_{-14}) -i (256 \pm 40 ^{+46}_{-22}) MeV/c2c^2. Also in this channel, the decay J/ψ→K∗(892)+K∗(892)−J/\psi \to K^*(892)^+ K^*(892)^- is observed for the first time. Its branching ratio is (1.00±0.19−0.32+0.11)×10−3(1.00 \pm 0.19 ^{+0.11}_{-0.32}) \times 10^{-3}.Comment: 14 pages, 4 figure

    Evidence for kappa Meson Production in J/psi -> bar{K}^*(892)^0K^+pi^- Process

    Get PDF
    Based on 58 million BESII J/psi events, the bar{K}^*(892)^0K^+pi^- channel in K^+K^-pi^+pi^- is studied. A clear low mass enhancement in the invariant mass spectrum of K^+pi^- is observed. The low mass enhancement does not come from background of other J/psi decay channels, nor from phase space. Two independent partial wave analyses have been performed. Both analyses favor that the low mass enhancement is the kappa, an isospinor scalar resonant state. The average mass and width of the kappa in the two analyses are 878 +- 23^{+64}_{-55} MeV/c^2 and 499 +- 52^{+55}_{-87} MeV/c^2, respectively, corresponding to a pole at (841 +- 30^{+81}_{-73}) - i(309 +- 45^{+48}_{-72}) MeV/c^2.Comment: 17 pages, 5 figure

    The CALorimetric Electron Telescope (CALET) for high-energy astroparticle physics on the International Space Station

    Get PDF
    The CALorimetric Electron Telescope (CALET) is a space experiment, currently under development by Japan in collaboration with Italy and the United States, which will measure the flux of cosmic-ray electrons (and positrons) up to 20 TeV energy, of gamma rays up to 10 TeV, of nuclei with Z from 1 to 40 up to 1 PeV energy, and will detect gamma-ray bursts in the 7 keV to 20 MeV energy range during a 5 year mission. These measurements are essential to investigate possible nearby astrophysical sources of high energy electrons, study the details of galactic particle propagation and search for dark matter signatures. The main detector of CALET, the Calorimeter, consists of a module to identify the particle charge, followed by a thin imaging calorimeter (3 radiation lengths) with tungsten plates interleaving scintillating fibre planes, and a thick energy measuring calorimeter (27 radiation lengths) composed of lead tungstate logs. The Calorimeter has the depth, imaging capabilities and energy resolution necessary for excellent separation between hadrons, electrons and gamma rays. The instrument is currently being prepared for launch (expected in 2015) to the International Space Station ISS, for installation on the Japanese Experiment Module - Exposure Facility (JEM-EF)
    • 

    corecore