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Abstract

Background: Geospatial technology has facilitated the discovery of disease distributions and etiology and helped
target prevention programs. Globally, gastric cancer is the leading infection-associated cancer, and third leading
cause of cancer mortality worldwide, with marked geographic variation. Central and South America have a
significant burden, particularly in the mountainous regions. In the context of an ongoing population-based case-
control study in Central America, our aim was to examine the spatial epidemiology of gastric cancer subtypes and
H. pylori virulence factors.

Methods: Patients diagnosed with gastric cancer from 2002 to 2013 in western Honduras were identified in the
prospective gastric cancer registry at the principal district hospital. Diagnosis was based on endoscopy and
confirmatory histopathology. Geospatial methods were applied using the ArcGIS v10.3.1 and SaTScan v9.4.2
platforms to examine regional distributions of the gastric cancer histologic subtypes (Lauren classification), and the
H. pylori CagA virulence factor. Getis-Ord-Gi hot spot and Discrete Poisson SaTScan statistics, respectively, were used
to explore spatial clustering at the village level (30–50 rural households), with standardization by each village’s
population. H. pylori and CagA serologic status was determined using the novel H. pylori multiplex assay (DKFZ,
Germany).

Results: Three hundred seventy-eight incident cases met the inclusion criteria (mean age 63.7, male 66.3%). Areas
of higher gastric cancer incidence were identified. Significant spatial clustering of diffuse histology adenocarcinoma
was revealed both by the Getis-Ord-GI* hot spot analysis (P-value < 0.0015; range 0.00003–0.0014; 99%CI), and by
the SaTScan statistic (P-value < 0.006; range 0.0026–0.0054). The intestinal subtype was randomly distributed. H.
pylori CagA had significant spatial clustering only in association with the diffuse histology cancer hot spot (Getis-
Ord-Gi* P value ≤0.001; range 0.0001–0.0010; SaTScan statistic P value 0.0085). In the diffuse gastric cancer hot spot,
the lowest age quartile range was 21–46 years, significantly lower than the intestinal cancers (P = 0.024).

Conclusions: Geospatial methods have identified a significant cluster of incident diffuse type adenocarcinoma
cases in rural Central America, suggest of a germline genetic association. Further genomic and geospatial analyses
to identify potential spatial patterns of genetic, bacterial, and environmental risk factors may be informative.
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Background
Gastric adenocarcinoma is the leading global cause of
infection-related cancer mortality and overall is the third
leading cause of cancer death [1–4]. Approximately 1
million incident cases are projected annually, with the
majority of incident cases observed in eastern Asia,
Latin America, and eastern Europe. Nearly 70% of global
cancers now occur in low/middle income countries
(LMICs), and seven cancers, including gastric cancer, ac-
count for 70% of the LMIC cancer mortality burden [2].
Gastric cancer has marked geographic variability,

assessed at the regional, country, and within-country
levels [5]. In Latin America, a significant burden of dis-
ease is concentrated in the mountainous regions along
the Pacific littoral [6, 7], the gastric cancer “altitude en-
igma”, and may represent host genetic variation. Helico-
bacter pylori (H. pylori) virulence factors, and dietary
and environmental risk exposures also play a role in the
rural mountain villages [6]. There is also evidence that
disrupted host-H. pylori coevolution, with mismatch of
respective genetic ancestries, may play a role in cancer
predisposition in Latin America [8–10]. H. pylori is the
most common chronic bacterial infection in the world,
affecting half of the world’s population. Infection preva-
lence ranges from 20 to 35% in high income countries to
60–90% in LMICs [10–12]. H. pylori CagA has been
shown to be an important virulence factor for disease
progression to gastric adenocarcinoma [13–16]. The
principal subsets of gastric adenocarcinoma per the Lau-
ren histologic classification are intestinal and diffuse,
and recent findings in The Cancer Genome Atlas
(TCGA) NIH initiative confirm these subtypes [17–19].
Germline genetic associations may be present in 5–10%

of gastric adenocarcinoma [20]. Hereditary diffuse gastric
cancer (HDGC) is uncommon, and primarily driven by
CDH1 mutations [20]. Recent studies suggest that hom-
ologous recombination (HR) germline mutations (PALB2,
BRCA1, RAD51C) are also important in familial clusters,
including in Latin America [21]. Some familial clustering
may also be attributable to shared bacterial or environ-
mental exposures. Globally, intestinal gastric cancer is
more common than diffuse by a 4.6:2 ratio [19], although
in Central America and in Hispanics in the U.S., the dif-
fuse subtype has a higher prevalence [22].
Geospatial methods and the use of geographic infor-

mation systems (GIS) can delineate disease distributions
and etiology, as well as inform prevention programs,
however, few studies have applied spatial techniques to
examine gastric cancer [23–26]. The objective of this
study was to utilize geospatial methods to examine the
spatial distributions of gastric cancer subtypes, in the
context of an ongoing population-based, case-control
study in Central America. The identified clusters of high
gastric cancer incidence may implicate germline genetic

associations, along with bacterial, dietary, or environ-
mental co-factors.

Methods
Study design and setting
We performed spatial cluster analyses in the context of
an active population-based, case-control study centered
in western Honduras. The study was set in rural
Honduras and is representative of the Central America
Four (“CA-4”) region (Guatemala, Honduras, El Salva-
dor, Nicaragua), the largest LMIC region in the western
hemisphere, with over 36 million inhabitants [26]. This
mountainous region has a racial-ethnic mixture of pri-
marily Hispanic Mestizo (95%) and has among the high-
est gastric cancer incidence rates in the western
hemisphere, with a high prevalence of H. pylori infection
of over 80% [2, 27–29].
We prospectively identified all incident cases of gastric

cancer between 2002 and 2013 from a registry within
the Ministry of Health district hospital (Hospital de
Occidente) of western Honduras in Santa Rosa de
Copán, that serves as the principal referral center for the
region. The hospital catchment area has been previously
described [28]. The diagnosis of gastric cancer was based
on endoscopic appearance and confirmatory histopath-
ology. Western Honduras includes all or part of the
three western states (departamentos) of Honduras, span-
ning 5000 km2, with an adult population of approxi-
mately 400,000. Each state is comprised of counties
(municipalities) consisting of villages (aldeas) of 30–50
households on average, each with a unique geocode. In-
cident cases in the villages of the three western states in
the referral area were included in the analysis. The crude
incidence rates for each village were calculated for GIS
mapping: number of cases per village population per
100,000 persons for the overall study period. The popu-
lation data for each village was obtained from the
Honduras Census Institution (Instituto Nacional de
Estadistica) from the census year 2001 [30].

H. pylori infection assessment
H. pylori and CagA status were determined by the novel
validated H. pylori multiplex serology. This antibody de-
tection technology uses 15 H. pylori proteins bacterially
expressed in full length as recombinant proteins in fu-
sion with N-terminal glutathione-S-transferase (GST)
and C-terminal a small tagging epitope (tag). Each
GST-X-tag fusion protein was bound and
affinity-purified on a different bead set with glutathione
surface and marked with a distinct internal fluorescent
color (SeroMap, Luminex Corp., Austin, TX, USA) [31–
36]. Seropositivity against each of the 15 H.pylori anti-
gens, including CagA, was defined based on
antigen-specific cut-point values, previously determined
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in validation studies [29]. Positive H. pylori status was
defined as seropositivity against more than 3 of these
antigens.

Geospatial and statistical analysis
The Getis Ord Gi* local spatial cluster analysis method
was implemented in ArcGIS® version 10.3.1 (ESRI, Red-
lands, CA, USA) [37]. This method analyzes each feature
in the context of its neighboring features (e.g., villages). A
village (aldea) with a high value surrounded by other vil-
lages with high values may be a statistically significant hot
spot. A fixed distance band of 23 km (~ 14miles) was used
to examine spatial relationships of aldeas. We selected a
23 km distance to ensure that each aldea had multiple
neighbors. The local sum of cases for each aldea and its
neighbors is compared proportionally to the sum of all
cases in the study area. If the local sum is very different
from the expected local sum (and is too large to be ran-
dom) it is a statistically significant hot (or cold spot).

Cluster P values were adjusted for multiple testing using
the False Discovery Rate (FDR) correction. Kulldorff ’s
spatial scan statistic, a complementary methology, was
used to validate the hot spot analysis results using SaTS-
can 9.4 (Boston, MA) [38]. A discrete Poisson model was
used to identify high gastric cancer incidence clusters. The
spatial scan statistic uses a circular roving window varying
in size, that increases incrementally to encompass a max-
imum percent of the population (25, 50%, etc.). We set
the maximum window size to encompass up to 25% of the
population. Counts that are higher than expected relative
to the underlying population and study area are desig-
nated as a cluster. Cluster significance was determined
using Monte Carlo simulation (999 permutations).
Diffuse histology cancer cases and intestinal histology

cancer cases were analyzed separately. Cases of mixed or
indeterminate histology were excluded from the geospa-
tial analysis. The H. pylori CagA spatial distribution was
analyzed subsequently. Gastric cancer cases without

Table 1 Demographic and exposure factors of the intestinal and diffuse type gastric cancer cases

Characteristics Overall population Spatial analysis cases Cases without village geocodesb P value

Cancer Cases (N) 498 378 120 0.047

Intestinal subtype 259 (52.0%) 187 (49.5) 72 (60)

Diffuse subtype 239 (48.0%) 191 (50.5) 48 (40)

Age, mean (SD) 63.2 (13.8) 62.6 (13.9) 65.4 (13.6) 0.054

Gender 0.51

Female (%) 168 (33.7) 131 (34.7) 37 (30.8)

Male (%) 330 (66.3) 247 (65.3) 83 (69.2)

Family history GC (%) 0.81

Yes (%) 33 (6.6) 26 (6.9) 7 (5.8)

No (%) 448 (90.0) 340 (89.9) 108 (90.0)

Not reported (%) 17 (3.4) 12 (3.2) 5 (4.2)

Alcohol history (ever) 0.72

Yes (%) 107 (21.8) 79 (21.4) 28 (23.3)

No (%) 373 (76.1) 284 (76.8) 89 (74.2)

Not reported (%) 18 (3.6) 15 (4.0) 3 (2.5)

Smoking history (ever) 0.72

Yes (%) 126 (24.1) 97 (26.6) 29 (24.8)

No (%) 355 (73.6) 267 (73.2) 88 (75.2)

Not reported (%) 17 (3.4) 14 (3.7) 3 (2.5)

H. pylori serodiagnosisa 385 286 99 0.82

Positive N (%) 337 (87.5) 251 (87.8) 86 (86.9)

Negative N (%) 48 (12.5) 35 (12.2) 13 (13.1)

H. pylori CagA antibodiesa 385 286 99 0.64

Positive N (%) 361 (93.8) 267 (93.4) 94 (95.0)

Negative N (%) 24 (6.2) 19 (6.6) 5 (5.0)
aThe comparison P values refer to the spatial analysis cases with geocodes versus the excluded cases without the village-level (aldea) geocodes. bIn the initial
study period, geocodes were at times limited to the municipality-level, without village-level data
aH. pylori and CagA multiplex assay data were not available for all subjects in the study populations
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aldea geocodes and aldea population data, were excluded
from the geospatial analysis, by necessity, but included
in the overall descriptive analyses of the study popula-
tion. Demographic and clinical data were analyzed by
chi-squared and univariable multinomial logistic regres-
sion analyses.

Results
A total of 702 gastric cancer patients were identified in
the western Honduras gastric cancer registry from 2002
to 2013. There were 498 subjects with either intestinal
or diffuse subtypes, with a mean age of 63.2 (SD 13.8),
and 66.3% males (n = 330). Three hundred seventy-eight
patients had validated village-level (aldea) geocode data
for the spatial analysis. (Table 1). The subjects without
village-level geocodes were primarily from the early
study period, which primarily focused on county-level
geocoding. The excluded subjects (n = 204) were from
outside of the district hospital catchment area (n = 108),
with non- intestinal/diffuse histology (n = 80; mixed 42;
indeterminate 35; other 3), or had missing data (n = 16).

In the overall study population, there were 259 cases
(52%) of the intestinal subtype. Over three quarters of
cancer patients (87.5%) were positive for H. pylori infec-
tion by multiplex serology, of whom 93.8% were CagA
positive. In this setting, tobacco and alcohol use was lim-
ited, with proportions of never-used of 73.6 and 76.1%,
respectively. A family history of gastric cancer was only
noted in 6.6% of cases. No significant differences in
demographic or clinical features were noted between the
geospatial analysis study group (with aldea geocodes)
and the subject group without geocodes, with the excep-
tion of borderline differences (P = 0.05) in age and pro-
portions of the Lauren classification subtypes.
In the study period, in the catchment area, incident

cases were identified in 219 villages within a total of 58
counties. Hot spots of diffuse gastric cancer incidence
were identified by both independent methodologies
(Fig. 1). The Getis Ord Gi* hot spot analysis identified
three neighboring hotspots in western Honduras (P
value < 0.0015; range 0.00003–0.0014; 99% CI) that may
be considered one cluster area. The spatial scan statistic

Fig. 1 Spatial clustering of diffuse type gastric cancer, Getis Ord Gi* hot spot cluster analysis. Spatial clustering of diffuse gastric cancer incident
cases were identified by two independent GIS methodologies. The Getis Ord Gi* hot spot analysis (Fig. 1), identified three neighboring hotspots
in western Honduras that may be considered one cluster area (P value < 0.0015; range 0.00003–0.0014; 99% CI). The spatial scan statistic SaTScan
(not shown) also demonstrated a statistically significant cluster (32 km radius) in the same location (P-value < 0.006; range 0.0026–0.0054). The
intestinal subtype cancers were randomly distributed, and without high incidence clusters
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results corroborated the hotspot findings. A single statis-
tically significant cluster with a 32 km radius was identi-
fied in the same location as the hotspots using SaTScan
(P-value < 0.006; range 0.0026–0.0054). The intestinal
subtype cancers were randomly distributed, and without
high incidence clusters. (Fig. 1).
Clusters of aldeas with a higher relative number of

cases of H. pylori CagA were identified, but only among
the diffuse type cancer hotspot clusters. Hotspots were
detected using the Getis-Ord Gi* statistic (P value
≤0.001; range 0.0001–0.0010). (Fig. 2). The location of
the H. pylori CagA hotspots was also observed with the
SaTScan statistic, with a significant cluster (P-value <
0.0085) with a 4 km radius, located in the same area.
The overlap of the clustering areas of diffuse cancer and
CagA areas was noted, indicating that CagA may be a
co-factor in the area where germline mutations may be
important. CagA was randomly distributed outside of
the diffuse cancer cluster hotspot, and also among the
intestinal cancers within this hotspot area.
We examined differences in demographic and exposure

factors between cases that were located in the diffuse

hotspot versus cases that were intestinal as well as all can-
cers outside of the cluster area. Table 2 summarizes the
demographic and exposure factors of the hot spot (cluster)
of diffuse gastric cancer for the 378 patients for which
village-level geocodes were available. H. pylori multiplex
serology data was available for 286 out of the 378 cases in
the geospatial analysis. Importantly, diffuse cases in the
diffuse gastric cancer hot spot had the lowest age inter-
quartile 0–25% range, 21–46 years, and were significantly
younger than the intestinal cases located within the diffuse
cluster (P = 0.024). The modest number of cases within
the diffuse cancer hot spot may have limited the power to
detect some significant differences in other risk exposures.

Discussion
Gastric cancer, the leading infection-associated cancer,
demonstrates remarkable geographic variability. In Latin
America, the burden is concentrated in the Pacific
littoral mountainous regions of Mexico, Central Amer-
ica, and the Andes [6]. We have identified hot spots of
the diffuse gastric cancer subtype, in the mountainous
region of western Honduras, with rigorous geospatial

Fig. 2 Spatial analysis of H. pylori CagA, by Getis Ord Gi* hot spot cluster analysis. Clusters with a higher relative number of cases with H. pylori
CagA infection were identified, but only in association with the incident diffuse cancer clusters. CagA hotspots were detected using the Getis-Ord
Gi* statistic (P value ≤0.001; range 0.0001–0.0010), as shown in Fig. 2. The H. pylori CagA hotspots was also observed with the SaTScan statistic (P-
value < 0.0085) in the same area (not shown). This indicates that CagA may be a co-factor in the diffuse gastric cancer cluster area. CagA was
randomly distributed among the diffuse cancers outside of the hotspot. CagA was also randomly distributed among the intestinal cancers in the
hotspot area and in the western Honduras as a whole
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methods. We postulate that the geographic clustering
and younger age of the diffuse gastric cancer patients
may implicate a germline genetic association. This may
represent a cluster of subjects with germline mutations
of CDH1, another tumor suppressor gene, or other re-
cently described associations [20, 39–42].
The cluster of diffuse adenocarcinomas may be due to

several factors, including germline mutations, and may
represent a Founder and/or endogamy effects. Kaurah
et.al., observed a combination of both a Founder effect
and endogamy influences in hereditary diffuse gastric
cancer (HDGC) in rural British Colombia [43–45].

While all of the Central American populations originally
derived from Asian migrations, it is possible that they
were founded by different sub-groups, a migration
Founder effect. This could be tested using large-scale
genomic data. Similarly, following Spanish colonization
there were substantial bottlenecks across Central Amer-
ica with high mortality due to newly introduced infec-
tions (eg. smallpox), a potential extinction Founder
effect. The patterns of diffuse cancer may be affected by
varying degrees of host bottlenecks across our sites.
Lastly, endogamy may affect genetic risk in the isolated
mountain villages, either due to mating patterns,

Table 2 Demographic and exposure factors of the hot spot (cluster) of diffuse gastric cancer cases
Characteristics Cluster, Diffuse Cluster, Intestinal Non-cluster, Diffuse Non-cluster, Intestinal

Geospatial methodsa, P-values
• Getis Ord Gi
• SaTScan

P < 0.0015,99%CI
P < 0.006

Referent Referent Referent

Cases (N) 52 32 139 155

Histology, signet ring 75% na 82% na

Age, mean (SD) 60.2 (16.5) 69.7 (9.9) 61.3 (14) 63 (13.1)

Age IQR 46–73 62–76 52–72 53–73

Age IQR 0–25% 21–46 53–62 23–52 30–53

P-values Referent p = 0.002 p = 0.61 p = 0.034

Gender

Female N (%) 15 (28.9) 11 (34.4) 50 (36.0) 55 (35.5)

Male N (%) 37 (71.1) 21 (65.6) 89 (64.0) 100 (64.5)

P-values Referent p = 0.59 p = 0.36 p = 0.38

Family historya(N) 51 28 136 151

Yes (%) 2 (3.9) 3 (10.7) 7 (5.2) 14 (9.3)

No (%) 49 (96.1) 25 (89.3) 129 (94.9) 137 (90.7)

P-values Referent p = 0.25 p = 0.73 p = 0.24

Alcohol history, ever (N) 50 31 134 148

Yes (%) 13 (26) 10 (32.3) 25 (18.7) 31 (21)

No (%) 37 (74) 21 (67.7) 109 (81.3) 117 (79)

P-values Referent p = 0.54 p = 0.28 p = 0.46

Smoking history, ever (N) 50 31 134 149

Yes (%) 13 (26) 13 (42) 34 (25.4) 37 (24.8)

No (%) 37 (74) 18 (58) 100 (74.6) 112 (75.2)

P-values Referent p = 0.14 p = 0.93 p = 0.87

H. pylori serodiagnosisa (N) 38 25 107 116

Positive N (%) 31 (81.6) 20 (80) 96 (89.7) 104 (89.7)

Negative N (%) 7 (18.4) 5 (20) 11 (10.3) 12 (10.3)

P-values Referent p = 0.88 p = 0.20 p = 0.195

H. pylori Cag A antibodiesa (N) 38 25 107 116

Positive (%) 33 (86.8) 22 (88) 100 (93.5) 112 (96.5)

Negative (%) 5 (13.2) 3 (12) 7 (6.5) 4 (3.5)

P-values Referent p = 0.89 p = 0.21 p = 0.039
aTable 2 summarizes the demographic and exposure factors of the hot spot (cluster) of diffuse gastric cancer for the 378 patients for which village-level geocodes
were available. In the initial study period, geocodes often limited to the municipality-level, without village-level data. H. pylori CagA multiplex serology data was
available for 286 out of the 378 cases in geospatial analysis
aThe cluster detection methods identify areas with high prevalence villages adjacent to other high prevalence villages. Therefore, while the prevalence is higher
outside of the cluster, those patterns of higher incidence appear to be random
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patterns or the small effective population sizes. In the
latter case, we would predict that the clusters would
have smaller village population sizes.
The familial clustering in 5–10% of gastric cancer cases

may be partially attributed to shared H. pylori virulence fac-
tors, as well as environmental, dietary, and behavioral fac-
tors [20]. Specific H. pylori virulence factors may cluster in
families and populations. The CagA clusters in our analysis
are directly linked with the diffuse gastric cancer cluster.
This is likely a secondary association and co-factor with the
postulated germline genetic association, given the lower
overall CagA prevalence within the cluster area, as well as
the younger age of the diffuse cancer patients. It could also
be postulated that patterns of host and pathogen genetic
variation differ by region, thereby disrupting a
co-evolutionary history as we have previously demonstrated
in Colombia [8]. Environmental factors may be important
in some areas. For instance, volcanic soils have been pro-
posed as a contributory factor in the Middle East [24].
Lastly, EBV infection accounts for 10% of global gastric
cancer [19]. In Honduras, we have noted a prevalence of
9%, without apparent geographic variation [46]. Polymor-
phisms in the EBV viral genome may impact oncogenicity,
and warrant investigation of potential spatial patterns.
Some EBV genome variants encode epitopes affecting
innate or adaptive T cell response, implying that virulence
factors may alter normal mechanisms controlling
virus-induced cell growth [47, 48]. In sum, interactions be-
tween H. pylori, EBV and other components of the micro-
biome may also play a role in regional variation [49].
The principal limitations in the study are those inher-

ent in spatial epidemiology. The finding of geographic
hot spots of diffuse gastric cancers or H. pylori virulence
factors may represent statistical artifacts albeit unlikely
given the highly significant levels by two distinct meth-
odologies. By necessity for the spatial analysis, cases out-
side of the western Honduras catchment areas and
without aldea geocodes may have limited the sample size
somewhat, and the ability to detect environmental asso-
ciations. Exclusion of these populations would be un-
likely to affect the principal spatial analysis in the
defined catchment area.

Conclusion
Geospatial methods have identified a significant cluster
of diffuse gastric adenocarcinoma patients, in a high in-
cidence region of Central America. Investigation of po-
tential germline mutations in this cluster of diffuse
cancers is warranted. Further analyses to also study po-
tential spatial patterns of bacterial and environmental
risk factors may also be insightful.
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