65 research outputs found
Evaluation of the n-alkane technique for estimating the individual intake of dairy cows consuming diets containing herbage and a partial mixed ration
peer-reviewedEstimation of dry matter intake (DMI) using the n-alkane technique was evaluated in lactating dairy cows fed fresh herbage and a partial mixed ration (PMR). Four dietary treatments were investigated in a 2 × 2 factorial experiment using 16 Holstein-Friesian dairy cows. Dietary treatments were combinations of low and high amounts of fresh herbage (8 or 14 kg DM/cow per day) and PMR supplement (6 or 12 kg DM/cow per day). The pre-experimental period was 14 days followed by a 10-day experimental period. Cows were housed in individual metabolism stalls to allow for accurate measurement of DMI and total fecal output. Fecal n-alkane recovery rates were calculated to determine the most accurate corrections for incomplete fecal n-alkane recovery. The n-alkane technique accurately estimated DMI when corrected for incomplete fecal recovery using both published recovery rates and recovery rates calculated in this experiment. The most accurate application of recovery rates was with those calculated for each combination of dietary treatments, compared with using an average recovery rate. This research has important implications for the future use of the n-alkane technique, especially in PMR feeding systems. The discrepancy between estimated (when treatment recovery rates were applied) and measured herbage DMI increased with the amount of herbage offered but was not affected by amount of PMR. It was also found that the recovery rates of all natural n-alkanes increased as the amount of herbage increased. This research demonstrates that the n-alkane technique can be used to accurately estimate individual cow intake when fresh herbage and PMR are offered separately, evidenced by strong Lin’s concordance estimates
Assessment and Control of Foodborne Pathogens in Ireland
End of Project ReportConsumers are increasingly demanding food that is free from pathogens,
but with less preservatives and additives. As a response to these
conflicting demands, current trends in the food industry include minimal
processing, and the investigation of alternative inhibitors for use in foods.
Additionally, the manufacture of an increasing range of novel foods, and
the inclusion of non-dairy ingredients into dairy products, and vice versa,
poses additional dangers with respect to safety. Furthermore, the dramatic
increase in incidence of food-borne illness internationally, as a result of
contamination with food-borne pathogens such as Listeria
monocytogenes, is a cause of considerable consumer concern.
Bacteriocins are inhibitory peptides produced by a number of Lactic Acid
Bacteria which are capable of killing other bacteria. These natural
inhibitors have widespread applications in the preservation of foods, since
they can kill a number of pathogenic and spoilage bacteria.
The broad spectrum bacteriocin Lacticin 3147 (discovered in a previous
project and patented - see DPRC No. 3) is produced by Lactococcus lactis
subsp. lactis DPC3147, a food-grade strain, similar to strains used for
commercial cheese manufacture. Lacticin 3147 is effective in the
inhibition of all Gram positive bacteria tested including the food
pathogens Listeria monocytogenes and Staphylococcus aureus and food
spoilage bacteria such as Clostridia and Bacillus species.
As part of this project the bacteriocin Lacticin 3147 was assessed as a food
preservative for improving food safety via inhibition of pathogenic
organisms.
Thus the project plan followed a "twin-track" approach to assessing and
controlling the food safety aspects of Irish food. The first of these was designed to investigate the current safety status of
Irish dairy products.
The second approach involved an attempt to exploit natural antimicrobial
substances, including Lacticin 3147, to protect foods from pathogenic
bacteria.Department of Agriculture, Food and the Marin
Coronal Dimmings and the Early Phase of a CME Observed with STEREO and Hinode/EIS
We investigate the early phase of the 13 February 2009 coronal mass ejection
(CME). Observations with the twin STEREO spacecraft in quadrature allow us to
compare for the first time in one and the same event the temporal evolution of
coronal EUV dimmings, observed simultaneously on-disk and above the limb. We
find that these dimmings are synchronized and appear during the impulsive
acceleration phase of the CME, with the highest EUV intensity drop occurring a
few minutes after the maximum CME acceleration. During the propagation phase
two confined, bipolar dimming regions, appearing near the footpoints of a
pre-flare sigmoid structure, show an apparent migration away from the site of
the CME-associated flare. Additionally, they rotate around the 'center' of the
flare site, i.e., the configuration of the dimmings exhibits the same
'sheared-to-potential' evolution as the postflare loops. We conclude that the
motion pattern of the twin dimmings reflects not only the eruption of the flux
rope, but also the ensuing stretching of the overlying arcade. Finally, we find
that: (1) the global-scale dimmings, expanding from the source region of the
eruption, propagate with a speed similar to that of the leaving CME front; (2)
the mass loss occurs mainly during the period of strongest CME acceleration.
Two hours after the eruption Hinode/EIS observations show no substantial plasma
outflow, originating from the 'open' field twin dimming regions.Comment: accepted for publication in Solar Physic
Signatures of the slow solar wind streams from active regions in the inner corona
Some of local sources of the slow solar wind can be associated with
spectroscopically detected plasma outflows at edges of active regions
accompanied with specific signatures in the inner corona. The EUV telescopes
(e.g. SPIRIT/CORONAS-F, TESIS/CORONAS-Photon and SWAP/PROBA2) sometimes
observed extended ray-like structures seen at the limb above active regions in
1MK iron emission lines and described as "coronal rays". To verify the
relationship between coronal rays and plasma outflows, we analyze an isolated
active region (AR) adjacent to small coronal hole (CH) observed by different
EUV instruments in the end of July - beginning of August 2009. On August 1 EIS
revealed in the AR two compact outflows with the Doppler velocities V =10-30
km/s accompanied with fan loops diverging from their regions. At the limb the
ARCH interface region produced coronal rays observed by EUVI/STEREO-A on July
31 as well as by TESIS on August 7. The rays were co-aligned with open magnetic
field lines expanded to the streamer stalks. Using the DEM analysis, it was
found that the fan loops diverged from the outflow regions had the dominant
temperature of ~1 MK, which is similar to that of the outgoing plasma streams.
Parameters of the solar wind measured by STEREO-B, ACE, WIND, STEREO-A were
conformed with identification of the ARCH as a source region at the
Wang-Sheeley-Arge map of derived coronal holes for CR 2086. The results of the
study support the suggestion that coronal rays can represent signatures of
outflows from ARs propagating in the inner corona along open field lines into
the heliosphere.Comment: Accepted for publication in Solar Physics; 31 Pages; 13 Figure
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Electrocoalescence of water drop trains in oil under constant and pulsatile electric fields
This study addresses the effectiveness of constant and pulsed DC fields in promoting coalescence of dispersed water drops in an oil-continuous phase. For this purpose, a train of drops of relatively uniform size is injected into a stream of flowing sunflower oil. This stream is then admitted to a coalescing section, where an electric field is applied between a pair of ladder-shape bare electrodes. The capability of this device to enhance coalescence of droplets in a chain is investigated at different field intensities, frequencies and waveforms. The effect of the initial inter-droplet separation distance on the process performance is also addressed under constant DC fields. The dominant coalescence mechanism is found to be due to dipole–dipole interaction at low field strength, whereas electrophoresis becomes predominant at higher field strength. Experiments reveal the existence of an optimal frequency, where the average droplet size enlargement is maximized, especially at low field strengths. The droplet size at the outlet of the coalescer is also found to be dependent on the field waveform
Electrostatic phase separation: a review
The current understanding and developments in the electrostatic phase separation are reviewed. The literature covers predominantly two immiscible and inter-dispersed liquids following the last review on the topic some 15 years. Electrocoalescence kinetics and governing parameters, such as the applied field, liquid properties, drop shape and flow, are considered. The unfavorable effects, such as chain formation and partial coalescence, are discussed in detail. Moreover, the prospects of microfluidics platforms, non-uniform fields, coalescence on the dielectric surfaces to enhance the electrocoalescence rate are also considered. In addition to the electrocoalescence in water-in-oil emulsions the research in oil-in-oil coalescence is also discussed. Finally the studies in electrocoalescer development and commercial devices are also surveyed.
The analysis of the literature reveals that the use of pulsed DC and AC electric fields is preferred over constant DC fields for efficient coalescence; but the selection of the optimum field frequency a priori is still not possible and requires further research. Some recent studies have helped to clarify important aspects of the process such as partial coalescence and drop–drop non-coalescence. On the other hand, some key phenomena such as thin film breakup and chain formation are still unclear. Some designs of inline electrocoalescers have recently been proposed; however with limited success: the inadequate knowledge of the underlying physics still prevents this technology from leaving the realm of empiricism and fully developing in one based on rigorous scientific methodology
Genotype-Phenotype Correlation in NF1: Evidence for a More Severe Phenotype Associated with Missense Mutations Affecting NF1 Codons 844–848
Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000–3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons—Leu844, Cys845, Ala846, Leu847, and Gly848—located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844–848 exists and will be valuable in the management and genetic counseling of a significant number of individuals
The Physical Processes of CME/ICME Evolution
As observed in Thomson-scattered white light, coronal mass ejections (CMEs) are manifest as large-scale expulsions of plasma magnetically driven from the corona in the most energetic eruptions from the Sun. It remains a tantalizing mystery as to how these erupting magnetic fields evolve to form the complex structures we observe in the solar wind at Earth. Here, we strive to provide a fresh perspective on the post-eruption and interplanetary evolution of CMEs, focusing on the physical processes that define the many complex interactions of the ejected plasma with its surroundings as it departs the corona and propagates through the heliosphere. We summarize the ways CMEs and their interplanetary CMEs (ICMEs) are rotated, reconfigured, deformed, deflected, decelerated and disguised during their journey through the solar wind. This study then leads to consideration of how structures originating in coronal eruptions can be connected to their far removed interplanetary counterparts. Given that ICMEs are the drivers of most geomagnetic storms (and the sole driver of extreme storms), this work provides a guide to the processes that must be considered in making space weather forecasts from remote observations of the corona.Peer reviewe
- …