2,088 research outputs found

    Horava Gravity and Gravitons at a Conformal Point

    Full text link
    Recently Horava proposed a renormalizable gravity theory with higher derivatives by abandoning the Lorenz invariance in UV. Here, I study the Horava model at λ=1/3\lambda=1/3, where an anisotropic Weyl symmetry exists in the UV limit, in addition to the foliation-preserving diffeomorphism. By considering linear perturbations around Minkowski vacuum, I show that the scalar graviton mode is completely disappeared and only the usual tensor graviton modes remain in the physical spectrum. The existence of the UV conformal symmetry is unique to the theory with the detailed balance and it is quite probable that λ=1/3\lambda=1/3 be the UV fixed point. This situation is analogous to λ=1\lambda=1, which is Lorentz invariant in the IR limit and is believed to be the IR fixed point.Comment: Added comments and references, Accepted in GER

    Quantum Vibrational Impurity Embedded in a One-dimensional Chain

    Full text link
    We perform a fully quantum mechanical numerical calculation for the problem of a single electron (or excitation) propagating in a N-site one-dimensional chain in the presence of a single Holstein impurity. We compute the long-time averaged probability for finding the electron on the impurity site as a function of the nonlinearity parameter, defined in terms of the electron-phonon coupling strength and the oscillator frequency. The results, in the intermediate nonlinearity parameter range, differ substantially from the ones obtained through the use of the discrete nonlinear Schroedinger equation, even in the high-frequency regime.Comment: 8 pages, 4 figure

    Electromagnetic properties of graphene junctions

    Full text link
    A resonant chiral tunneling (CT) across a graphene junction (GJ) induced by an external electromagnetic field (EF) is studied. Modulation of the electron and hole wavefunction phases φ\varphi by the external EF during the CT processes strongly impacts the CT directional diagram. Therefore the a.c. transport characteristics of GJs depend on the EF polarization and frequency considerably. The GJ shows great promises for various nanoelectronic applications working in the THz diapason.Comment: 4 pages 3 figure

    Two-particle localization and antiresonance in disordered spin and qubit chains

    Full text link
    We show that, in a system with defects, two-particle states may experience destructive quantum interference, or antiresonance. It prevents an excitation localized on a defect from decaying even where the decay is allowed by energy conservation. The system studied is a qubit chain or an equivalent spin chain with an anisotropic (XXZXXZ) exchange coupling in a magnetic field. The chain has a defect with an excess on-site energy. It corresponds to a qubit with the level spacing different from other qubits. We show that, because of the interaction between excitations, a single defect may lead to multiple localized states. The energy spectra and localization lengths are found for two-excitation states. The localization of excitations facilitates the operation of a quantum computer. Analytical results for strongly anisotropic coupling are confirmed by numerical studies.Comment: Updated version, 13 pages, 5 figures To appear in Phys. Rev. B (2003

    Logistic regression for simulating damage occurrence on a fruit grading line

    Get PDF
    Many factors influence the incidence of mechanical damage in fruit handled on a grading line. This makes it difficult to address damage estimation from an analytical point of view. During fruit transfer from one element of a grading line to another, damage occurs as a combined effect of machinery roughness and the intrinsic susceptibility of fruit. This paper describes a method to estimate bruise probability by means of logistic regression, using data yielded by specific laboratory tests. Model accuracy was measured via the statistical significance of its parameters and its classification ability. The prediction model was then linked to a simulation model through which impacts and load levels, similar to those of real grading lines, could be generated. The simulation output sample size was determined to yield reliable estimations. The process makes it possible to derive a suitable line design and the type of fruit that should be handled to maintain bruise levels within European Union (EU) Standards. A real example with peaches was carried out with the aid of the software implementation SIMLIN®, developed by the authors and registered by Madrid Technical University. This kind of tool has been demanded by inter-professional associations and grading lines designers in recent year

    Spontaneous Symmetry Breaking in Photonic Lattices: Theory and Experiment

    Get PDF
    We examine an example of spontaneous symmetry breaking in a double-well waveguide with a symmetric potential. The ground state of the system beyond a critical power becomes asymmetric. The effect is illustrated numerically, and quantitatively analyzed via a Galerkin truncation that clearly shows the bifurcation from a symmetric to an asymmetric steady state. This phenomenon is also demonstrated experimentally when a probe beam is launched appropriately into an optically induced photonic lattice in a photorefractive material.Comment: 4 pages, 3 figure

    Functional output-controllability of time-invariant singular linear systems

    Get PDF
    In the space of finite-dimensional singular linear continuous-time-invariant systems described in the form \begin{equation}\label{eq1}\left . \begin{array}{rl} E \dot x(t)&= Ax(t)+Bu(t)\\ y(t)&=Cx(t)\end{array}{\kern-1mm}\right \}\end{equation} where E,AM=Mn(C)E,A\in M=M_{n}(\mathbb{C}), BMn×m(C)B\in M_{n\times m}(\mathbb{C}), CMp×n(C)C\in M_{p\times n}(\mathbb{C}), functional output-controllability character is considered. A simple test based in the computation of the rank of a certain constant matrix that can be associated to the system is presentedPeer ReviewedPostprint (published version

    Goos-H\"{a}nchen-like shifts for Dirac fermions in monolayer graphene barrier

    Full text link
    We investigate the Goos-H\"{a}nchen-like shifts for Dirac fermions in transmission through a monolayer graphene barrier. The lateral shifts, as the functions of the barrier's width and the incidence angle, can be negative and positive in Klein tunneling and classical motion, respectively. Due to their relations to the transmission gap, the lateral shifts can be enhanced by the transmission resonances when the incidence angle is less than the critical angle for total reflection, while their magnitudes become only the order of Fermi wavelength when the incidence angle is larger than the critical angle. These tunable beam shifts can also be modulated by the height of potential barrier and the induced gap, which gives rise to the applications in graphene-based devices.Comment: 5 pages, 5 figure

    Models of electron transport in single layer graphene

    Full text link
    The main features of the conductivity of doped single layer graphene are analyzed, and models for different scattering mechanisms are presented.Comment: 15 pages. Submitted to the Proceedings of the ULTI symposium on Quantum Phenomena and Devices at Low Temperatures, Espoo, Finland, to be published in the Journ. of Low. Temp. Phy

    Uniqueness and Nondegeneracy of Ground States for (Δ)sQ+QQα+1=0(-\Delta)^s Q + Q - Q^{\alpha+1} = 0 in R\mathbb{R}

    Full text link
    We prove uniqueness of ground state solutions Q=Q(x)0Q = Q(|x|) \geq 0 for the nonlinear equation (Δ)sQ+QQα+1=0(-\Delta)^s Q + Q - Q^{\alpha+1}= 0 in R\mathbb{R}, where 0<s<10 < s < 1 and 0<α<4s12s0 < \alpha < \frac{4s}{1-2s} for s<1/2s < 1/2 and 0<α<0 < \alpha < \infty for s1/2s \geq 1/2. Here (Δ)s(-\Delta)^s denotes the fractional Laplacian in one dimension. In particular, we generalize (by completely different techniques) the specific uniqueness result obtained by Amick and Toland for s=1/2s=1/2 and α=1\alpha=1 in [Acta Math., \textbf{167} (1991), 107--126]. As a technical key result in this paper, we show that the associated linearized operator L+=(Δ)s+1(α+1)QαL_+ = (-\Delta)^s + 1 - (\alpha+1) Q^\alpha is nondegenerate; i.\,e., its kernel satisfies kerL+=span{Q}\mathrm{ker}\, L_+ = \mathrm{span}\, \{Q'\}. This result about L+L_+ proves a spectral assumption, which plays a central role for the stability of solitary waves and blowup analysis for nonlinear dispersive PDEs with fractional Laplacians, such as the generalized Benjamin-Ono (BO) and Benjamin-Bona-Mahony (BBM) water wave equations.Comment: 45 page
    corecore