We investigate the Goos-H\"{a}nchen-like shifts for Dirac fermions in
transmission through a monolayer graphene barrier. The lateral shifts, as the
functions of the barrier's width and the incidence angle, can be negative and
positive in Klein tunneling and classical motion, respectively. Due to their
relations to the transmission gap, the lateral shifts can be enhanced by the
transmission resonances when the incidence angle is less than the critical
angle for total reflection, while their magnitudes become only the order of
Fermi wavelength when the incidence angle is larger than the critical angle.
These tunable beam shifts can also be modulated by the height of potential
barrier and the induced gap, which gives rise to the applications in
graphene-based devices.Comment: 5 pages, 5 figure