research

Uniqueness and Nondegeneracy of Ground States for (Δ)sQ+QQα+1=0(-\Delta)^s Q + Q - Q^{\alpha+1} = 0 in R\mathbb{R}

Abstract

We prove uniqueness of ground state solutions Q=Q(x)0Q = Q(|x|) \geq 0 for the nonlinear equation (Δ)sQ+QQα+1=0(-\Delta)^s Q + Q - Q^{\alpha+1}= 0 in R\mathbb{R}, where 0<s<10 < s < 1 and 0<α<4s12s0 < \alpha < \frac{4s}{1-2s} for s<1/2s < 1/2 and 0<α<0 < \alpha < \infty for s1/2s \geq 1/2. Here (Δ)s(-\Delta)^s denotes the fractional Laplacian in one dimension. In particular, we generalize (by completely different techniques) the specific uniqueness result obtained by Amick and Toland for s=1/2s=1/2 and α=1\alpha=1 in [Acta Math., \textbf{167} (1991), 107--126]. As a technical key result in this paper, we show that the associated linearized operator L+=(Δ)s+1(α+1)QαL_+ = (-\Delta)^s + 1 - (\alpha+1) Q^\alpha is nondegenerate; i.\,e., its kernel satisfies kerL+=span{Q}\mathrm{ker}\, L_+ = \mathrm{span}\, \{Q'\}. This result about L+L_+ proves a spectral assumption, which plays a central role for the stability of solitary waves and blowup analysis for nonlinear dispersive PDEs with fractional Laplacians, such as the generalized Benjamin-Ono (BO) and Benjamin-Bona-Mahony (BBM) water wave equations.Comment: 45 page

    Similar works